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PREFACE

This report describes the findings of NASA Contract No. NASI-4623

entitled, "Research Study of Some RAM Antennas. "

This work is specifically concerned with the determination of the radia-

tion pattern and input impedance characteristics of three types of radiat-

ing structures which are being considered for use on the NASA RAM

Program.

The three radiating structures considered are: a cylindrical gap

antenna, a waveguide excited-axial slotted cylinder antenna, and a

circular waveguide slot array. Since the technical approach for each

of these structures differs somewhat, the work has been divided into

three independent tasks as follows:

Task I Determination of Input Impedance and Radiation

Patterns for a Cylindrical Gap Antenna

Task II Determination of Input Impedance and Radiation Patterns

for Waveguide Excited-Axial Slotted Cylinder Antennas

Task III Determination of Radiation Patterns for a Circular

Waveguide Slot Array

In the interest of clarity, the work done on each task is reported

separately in what follows.
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I. INTRODUCTION

The purpose of this program is to investigate the performance charac-

teristics of a single feed cylindrical gap antenna {Fig. I-I) conceived

by W. F. Croswell of NASA and designed to operate around 260 Mc.

The objectives as described in the original work statement called for:

A. Analysis and measurement of the antenna input impedance

with no coating. They are given in Section 4. 1, 4.2, and 4.3 of this

task.

B. Analysis of the antenna input impedance with a radially

varying plasma. The analysis is given in Section 4.5.

C. Analysis and measurement of the radiation characteristics.

They are discussed in Section 4.6.

Before proceeding with the technical discussion (Section 4), we shall

summarize the most significant results (Section Z) and point out some

future areas of investigation (Section 3) which have ensued.

Z. SUMMARY OF RESULTS

A. Impedance measurements were made on a model scaled up

approximately 4:1 in frequency and compared with the predicted value.

For the 6-inch diameter antenna, 7/3Z-inch gap width and Z-inch di-

ameter center spacer fed by a nominal 50 _ coaxial line, a minimum

VSWR of 1.05 was measured at 1340 Mc {Table I-Z). For such low VSWR

all the input reactance can be considered tuned out. The input resistance

is then equal to the antenna radiation resistance. Calculations under

these conditions yielded for the input resistance a value of 46 _ corre-

sponding to a VSWR of 1.09 {Section 4.4). The discrepancy between

measured and calculated value is thus less than 4%. This is within the

accuracy of the measurement since the coaxial line 50 f] impedance has

a tolerance of + 2 _ or 4%. The calculated reactance is not as accurately

known because the higher modal susceptances were not computed. If

I-1
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only the first order modal susceptance is included in the calculation,

the equivalent calculated input impedance is (42.0 + j 12.7)_'_ corre-

sponding to a VSWR of i. 39 against the measured value i. 05 (Section

4.3). Under these conditions the discrepancy between measured and

calculated reactance is 24%.

B. The measured antenna impedance bandwidth (within 2:1

VSWR) was found to be approximately 10% (Table I-2). The impedance

at the band center was 50 ;] (Fig. 1-13) for a cylinder circumference of

2 wavelengths.

C. The input susceptance was found to be strongly dependent

on the center spacer diameter near the matching condition. A 5% change

in spacer diameter brings about a 30% change in the internal susceptance.

Measurements on various diameter center spacer (Fig. I-9) have con-

firmed this theoretical prediction.

D. A complete formulation to the antenna input impedance taking

into account a nonuniform current in the feed brought about by larger

gap widths has been found in terms of an integral equation (Section 4.1.2).

The solution to this integral equation is developed by means cf a Kernel

o-tn_gon__ in k-spaceexpanded in a set of new functions Cn(k), Sn(k ) ....

(Appendix I-B). The integral equation is solved for the c_se of uniforrr_

current, and the results are in accord with these cbtaine@ in the simpler

analy sis.

E. The complete expression for the input impedance in the

presence of a nonhomogeneous plasma layer has been derived using the

transfer function matrix developed by Swift (Section 4.5). In the limiting

case of no plasma, the resultant expression checks with the one originally

developed for no plasma.

F. Radiation patterns have been made on the L-band scale model

in an anechoic chamber. The patterns are not accurate because of

I-3



scattering in the chamber and antenna end effects. None of these patterrs

show the required omnidirectional coverage in the equatorial plane.

However_ the results indicate that it may be possible to achieve such a

coverage with single feed, although it will be critically dependent on

the center spacer diameter (Figs.I-17, 1-19).

3. RECOMMENDATIONS

In the light of the preceding results, the following work should be

pursued:

a. Additional computations of input impedance with no plasma

taking into account the 1st and possibly the 2nd higher modes of both

conductance and external susceptance.

b. Additional work, both theoretica! and experimental, t o

establish narrower bounds on the value of the feed impedance.

c. Carry out computations of input impedance with plasma for

a specific plasma profile. If the results of (a) show that the higher

modes are not significant, initial computations with plasma could be

simplified by considering only the zero-order mode.

d. Repeat measurements of input impedance and radiation

patterns on a full scale VHF antenna.

e. Extend the impedance analysis in order to take into acc_,unt

multiple feed.

f. Predict the amount of antenna mistuning caused by the

plasma reactance loading from the results of (c) above, and consequently

determine the signal reduction as a function of the information bandwidth.

g. Obtain a complete solution to the integral equation for the

case of arbitrary nonuniform current distribution in the feed using the

orthogonal expansion already developed. Such a solution will provide

useful theoretical predictions on antenna performarce for a wide class

of excitations.

I-4



4. TECHNICAL DISCUSSION

We shall derive an expression for the antenna input impedance, Z.
in

with no plasma coating (Section 4.1) and generalize the results to the

plasma coated case (Section 4.5). In Section 4.6, Radiation is discussed.

4.1 Derivation of Input Impedance, Z. -No Plasma
in

Consider the cylindrical gap antenna depicted in Fig. I-1. The gap

width, d, is narrow compared to the free space wavelength, A
o

(d<<_o) and is formed by a radial waveguide short-circuited at its

center by a spacer of radiusP = Po" The gap is fed by a coaxial line

located at the rim of the guide at p = a. The coax center conductor

makes electrical contact with the guide top plate and its outer conductor

is shorted out against the bottom plate. Because the gap width is small,

with respect to the wavelength, the current along the coax inner con-

ductor across the gap can be taken to be constant and equal to I. If the

voltage in the coax is V c, the antenna input impedance presented by the

gap to the coax is

V
z. = - _c (I-l)

in 1

This is not merely a definition but also a measurable quantity related

to the reflection coefficient 1-" in the coax via its characteristic

impedance Z
C

I+i-"
Z. =Zm c (I-Z)

In order to calculate Z. refer to Fig. I-Z which shows the feed regionin '

grossly enlarged. The voltages V c and V a in the coax and in the aperture

respectively, are related by Maxwell's equations to the magnetic flux

enclosed by the line integral of the electric field yielding these voltages,

that is,

I-5
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V a - V c = -_ B. dS, (I-3)

for a perfectly conducting wire. The integration is over the surface

defined by the loop boundary just described. The right hand side of

Eq. I-B is the inductive reactance of the loop, i c0 oLL times the total

current I flowing in the wires and spreading through the radial guide

plates. Equation I-3 can thus be rewritten after dividing by I

-Vc = -Va
T- T- + i 00oL 6 (I-4)

V
- C

T- is immediately recognized as the input impedance Z.inA
The ratio/_-- has the dimensions of an impedance and is defined as the

antenna aperture impedance. As we shall see, it is not in general

directly measurable, but in some cases it can be calculated from a

knowledge of the fields in the aperture, i _0 L 6 can be considered too

be solely due to the reactance of the loop. We may then express eq.

1-4 as follows':-"

being sought.

Zin = (Z a + Zaf) + (Zfa + Zf) (I-5)

-V
a

The first parenthesis being equal to T-- and the second to iC0oL 6 . Each

parenthesis consists of two parts, the self-impedances Za, Zf and the

mutual Zaf = Zfa. (The f and a subscript denotes respectively, feed

and aperture impedances.) The two impedances, aperture and feed,

can sometimes be calculated and/or measured independently of each

other if the interaction caused by the mutual impedances is negligible.

This is the case if the fields can be divided on a spatial basis into sub-

volumes such that the fields in any one subvolume can be attributed only

to sources not producing fields in any other subvolume. Thus,

_',' Dr. George I. Cohn made the analysis described by Eqs. I-5

to I- 10.

i-7
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;ZafI<< [Z ; (:-621

or

JZaff<<IZfI (i-6bl

then

Z. = Z + Zf (I-7)in a

V

Z =-T a is directly calculable from the fields in the gap which are ob-
a I

tained by solving the electromagnetic boundary value problem. Zf is

the wire inductive reactance L_ the absence of the gap.

Because the flux common to two subvolumes is always less than the self-

linking flux, we have

IZafJ_lzaI (l-7a)

or

Izafi_ zf (I-Tb)

One way to insure separability of impedances as given by Eq. I-7 is to

demand

Izal<<lzf I

or

(I-8a)

IzfJ<<lzaI (i-Sb)

that is either the wire inductive reactance is much smaller than the

aperture impedance or vice versa. As we shall see shortly, the feed

wire inductive reactance can be made to fulfill the inequality Eq.I,_,_,:_or

the gap antenna in question and vanishes as the gap goes to zero. We

thus proceed to calculate the feed impedance Zf and the aperture

impedance Z in the absence of coupling between them keeping in mind
a

that as long as Eq. I-8b is satisfied, the antenna input impedance Z.
111

is the sum of these two contributions.

I_8



4. I. 1 Feed Impedance, Zf

We proceed now to an estimation of the feed wire inductive reactance by

calculating the inductance for a geometrical approximation which esta-

blishes an upper bound. Consider then the inductance of a length d of

coaxial line of inner and outer radii rI add rz. It is easily shown that

rz__
Zf = 377 _ ¢n _ (I-9)

r 1o

d I r__K
If_-_ and r l _ i0

IzfJ~3oa (i-i0)

Since the antenna is to have an input impedance of 50 _ resistive in order

to match the coax characteristic impedance, Eq. I-8 is not fulfilled and

the input impedance is not separable into feed and aperture. Changing

the outer to inner coax radii ratio in Eq. I-9 is not as effective as

reducing the gap width since the logarithm varies slowly with the ratio

in question. If in order to fulfill Eq. I-8 the gap width is reduced to 1/Z

d 1or i/3 corresponding to _o of the order of to I-_ ' the impedance

is separable. Keeping this restriction in mind, we may proceed to the

calculation of the apert-_re impedance by solving for the fields in the gap.

4. I.Z Aperture Impedance, Z
a

We shall see that the solution of the electromagnetic fields subject to

the boundary conditions yields the aperture admittance, Ym =-_m f°r each

peripheral mode m. oV = Ezra d, is the voltage across J:lte g_.p!or the mth modem

as shown in Fig. I-3.
CO

Z =1 1a Y
m

m=o

The total aperture impedance is in turn related to Y bym
OO

- I 1 (I-11)
G +i (Bmi + B e)m=o m m

refers to the susceptance presented at the feed by the interior

Be is the susceptance
m

i
B

m

region, that is, the radial waveguide.

I-9
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I
contribution of the exterior region. For a narrow gap, with uniform
feed current, the resultant modal admittance Y , normalized with

m

respect to the wave impedance in the exterior space Yo ((1ZOTf _6)-I
for free space) is given in Eq. 1-55a and repeated below for convenience

in slightly different form

i _-gm+i (b%+ blm ) (I-55a)

o_ 2 Xdo _ 2 Xdo

1 _ sine T x 2 dx

Gm 4 sine T _dx + (_o)2 ! Zgm

2 xd 2Xdo

I I z o dx , . _rv._._ sinc ._.Z_ __rn o iT, o H(r_Z) (ao IB_'_-xZ)rno m o sinc 2 __,l_xZ _ Krn(ao %_x_ _ l)

ml ,mi% ,V-L-7_xq+Nm %V _xZ N . C -/L-Tq Xdo x
(1-x) z_ (aoxq'2_-I)

B i F m (ato)
b i m . 2'¢¢ at

m = ¥-'--_ = -1T_ (I-55b)

dx

sinc z Xdo x Z dx

T
(x - 1)

_x, a d being defined in Eq. 1-56 and Eq. 1-57 as normalized wave
O' O

number, cylinder radius and gap width and F' and F in Eqs. 1-12
m m

and 1-13. In order to derive Z m, the first step is to calculate the

fields in both regions, then match them at the boundaries between

antenna and exterior region, and finally obtain the modal input admit-

tance Y . These three steps are taken up below.
rn

A. Calculation of Field Components

They follow from a straightforward application of Maxwell's

I-II



Equations in both the interior Region I and the exterior Region IL _r_

Region I, inside the radialwaveguide, the fields are expressed in terms
of discrete modes in the z-direction, the unknown coefficients being

determined by the end conditions at the top and bottom plates. _n the

outer Region Ii, they are expressed in terms of continuous modes in

k-space via Fourier integrals; both fields are built in terms of th_
im_same discrete mode of the form e around the _-directiono Th_ co_.-

tinuous modes in Region II are eventually expanded into discrete modes

over the gap interval and matched to the corresponding modes of Region

I. In either region_ the total field is a superposition of E and H
2 Z

modes. The E mode has two transverse components_ H _ H and a
z p

longitudinal one, Ez. Similarly, the Hz mode is made up of Ep, E_

and H . The transverse component of each mode is a linear super-
z

position of the E and H longitudinal components, E and H satisf?
Z Z Z Z

a scalar wave equation in both re_ions. In the z-direction, the fields

_c°sn_ z_are built-up of discrete modes,I_ _ _ in the inner region, if we

L s!n

assume the most general current distribution in the wire_

(DO

i I_m =

n--o

In the outer region,

via a Fourier Integral,

oo

I_m = g (k) e

II, they consist of continuous modes expressed

dk

In either case,

I ___mn _ im_

=m___o% )_em (k

in both regions. Solution of the wave equation gives for the ruth mode

after satisfying boundary conditions at p = Do:
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B. Matching of Field Components

We now proceed to evaluate the 4 sets of unknown coefficients

amn, bran, c m, d m by matching the fields at p = a. In doing so, we shall

often use two sets of functions, Cn(k) and Sn(k) orthogonal in k-space over

the range, -co < k < co. Their properties are described in Appendix I-A.

Suffice to say that they serve to expand the Fourier transform of the field

in Region II into discrete modes n over the gap and are the counterpart in

k-space of the corresponding expansion in Region I. These functions are

defined as follows:

d

1 _ ikz nv -ikd _ 1)ne ikd 1]C n (k) = -_ e cos -_- z dz = - -
(kd)Z-(nlr) Z

0

(I-16a)

d

1 _ ikz n_ n_ E-1)neikd 1JS n(k) =_ e sin-_-z dz =

o (kd) 2 -(n_') 2

(I- 16b)

they are related by

inn Cn(k )Sn(k) = k--d"
(I-17)

and fulfill the orthogonal relation

(3O

C n (k) C 6 (k) dk = _[ 6 n

-oo

(1+6 o)
n

(i-18a)

Sn (k) S2(k ) dk = _[

-(30

6n6 ( 1- 6nO )
(I- 18b)
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B. 1 Boundary Condition on E
zm

The electric fields at the interface surface p = a between

the two regions, are equal over the entire surface: over the gap as

well as over the metal boundary. Hence,

I II
E =E -oo_z _oo

zm zm
(I-J9)

oo oO

Z 2 nit _ (2)(ua) eikz dka u Fm(Una)Cos-6-z= c u2Hmn n m m

n=o -O0

-co _ z <-_re(l-Z0)

2_T[

Multiplying both sides by cos 7 z and integrating with respect to z

over the orthogonal range d yields a in terms of c
mn m

u 2 H (2)(ua) Cm(k ) C n (k) dkm

2 -OO
a - (I-21)mn o 2

1 U F (Una)+6n n m

We have now succeeded in eliminating one of the 4 sets of unknown co-

efficients. Before proceeding to apply additional boundary conditions in

order to eliminate the other sets, it is worthwhile to express the unknown

set c in terms of a mode voltage defined by
m

V =\ E dz at p = a (I-ZZ)
m _9 zm

o

This mode voltage has given a more direct physical interpretation to

the problem than the coefficient c . The higher modes in the z- directionm

(n>o) do not contribute to this voltage; only the fundamental n=o mode,
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corresponding to a uniform field in the z-direction across the gap. The

mode number m, of course, represents only angular variation arour_d

the gap. The total voltage V =_V is the superposition of the voltagem
created in m antennas having a uniform field across the gap (n=o) but

of increasing angular periodicity with m around the periphery. This is

illustrated in Fig.]- 3.

By manipulating the preceding equation, we end upwith an integral

equation for Cm(k) in terms of Vm.

oo

V /2_ oo _Cm(l_)u_-Im{Z_u'a)Cn(k_dk' _:=

_t. Z
c (k)= m C_'(k)+ d - C (k)

m U2Hm(Z)(ua) o n:_:lW u2 Hm( 2)(ua ) n

(i-z3)

Its solution is trivial

oo A

Z mn "_Cm(k) = 2 2_ Cn"(k)
u H (_(ua)

n=o m

(I-24)

The A 's are unknown coefficients and
mn

V

A = rn
mo 2_

Expressing E II in terms of Cm(k) and taking the inverse Fourier
zm

transform yields the obvious result

(!-z5)

V oo

E II (z,a) m 2w _ n_
zm = _ + T L A cos z

n=l mn "_

(I-Z6)
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showing that the total electric field for a given peripheral mode is made

up of discrete modes in the z-direction. With the aid of Eq. I-Z4, the

coefficient a can be expressed more simply by
mn

A
Zw mn

a = -- (I-Z7)mn d 2
F a)Un m (Un

where we have used the orthogonal condition (Eq. 1-18a).

B. 2 Boundary Condition on H
zm

Here the situation is complicated by the fact H is not
zm

known over the metal surface. However, by expanding H n into an
zm

orthogonal sine expansion over the gap we can solve for b as a
mn

function of d . For each region there is now a similar field expansion,m

orthogonal over the gap. The result is

O0

_ uz H (Z)(ua) dm(k ) Sn(k ) dkm

2 -COb -
mn o 2

l-6n Un Gm (Una)

(i-z8)

B. 3 Boundary Condition on Hpm

We are now in a position to eliminate dm(k ) as a function

of cm(k ) with the use of Eq. 1-21, Eq. 1-Z8 and this boundary condition.

We now have

I II
= -CO< z < CO (I-29a)Hpm Hpm

but note that

Hp I II dl_ d=o=H Iz-m Pm _ (I-29b)
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Rather than using the approach which yielded Eq. 1-20, we instead

equate the Fourier transform of the fields at the interface

-- I -- II (I-Z9c)
Hpm :Hpm

and note that because of Eq. I-Pgb

I

lq
pm

d oo

1 I ' d ":_
ooa m n mn nWuG (ua)b _-_--C (i.)= ___Hprne-ikZdz=_, {-¥ krnF (ua)a +'_-- n m n mnJ/-_r n

O n:o

(I-30)

II
Equating the above expression to H , we get after using Eqs.

m

I-Z7, 1-28, and a few manipulations:

mk 1 Z
dm(k) = i¥o u--[I/-ou2H (2)'(ua) n=o i- t_-_

m
o

A C
mn n

l-Z_,

GO

i Z!

ukH (2) (ua) n= 1
m

co

m Gm(una) {._dmU,Z H (2)(u,a) Sn(k,)dk,_ C ;:"(k)

Un (l+6n o) Gm(Una ) _- m

(I-31)

The above is an integral equation for din(k) in terms of the unknown modal

coefficients A . Its solution is rather involved and is discussed in
mn

Appendix B. Note that if n=o which means no z-variation of the fields in

the interface gap, then dm(k ) reduces to

kd

I m - ikd sin "-Z" (I- 3P.);:=dm(k ) = - i¥ m k V

o ua _ (Z)'( e -o Zw u2H ua) Z kd
n=o m -'_

sin x
':_We shall use the abbreviation sinc x -

x
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where use has been made of Eq. 1-16a for n=o and Eq. 1-g5 in obtaining

the preceding expression.

B. 4 Boundary Condition on H_m

Having expressed a and b in terms of c and d andmn mn m m

having related d to c via an integral equation, this last boundarym m

condition allows us at least formally to eliminate the last unknown set

of coefficients Cm(k) in favor of the current source excitation, I in the

coaxial feed across the gap. The feed current I is first expressed

in terms of the current density Jz around the gap interface. If the feed

wire has negligible radius compared to k o' we can write for the current

density in the z-direction, Jz over the gap interface:

J = 16 (a,¢) =i 6(_) (I-33)
z a

The current density can now be expanded in orthogonal angular modes,

m over the periphery,

I im_ (1-34)J = J e
z zm

m=o

%_¢ J.L,J.L

Zw

j _ 1 _ -ira4zm Zw Jz e d4 (I-35)

0

Using Eq. 1-33 in Eq. 1-35 yields the discrete mode spectrum in m-space

of the current density Jz over the gap interface:

j = (1-36)
zm Z wa

Note that because the wire was taken to have essentially zero radius it

gives a flat mode spectrum for J . For each mode m, a currentzm

sheath is present at the gap interface; it is uniform across the gap

interface in the z-direction and displays angular variation around its
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periphery according to the mode n number m. This current density

is responsible for the discontinuity in the _-magnetic field components

across the interface,

II I _ I o<z<d
H$m - H6m Z _ a

Note that the preceding boundary condition only applies over the gap
II

interface. Hence, we must expand H6m into an orthogonal cosine

series over this region, i.e,,

CO

m II Z nH4 = _n cos _ z

n--o

(I-37)

(I-38)

with

d

(_ = 2 _ II nw
n (I + 6 °)d H6m cos --d'--zdz

n o

Expressing HSmII in terms of its Fourier mate H6mII---=

stituting it in Eq. 1-39 the desired expansion

(1-39)

yields after sub-

Him-_m -z { l+62 0 _T (]<}On (k)dk}cos _nw

n=o n -_

z

I and II
Substitution of the corresponding expressions for H_m HSm

Eq. I-ll into Eq. 1-37 gives

(I-40)

fron%

QO CO

Z-{ 1__5 o _ (+Cmi_ok u H (2 } ' km ))
+d--H (z Cndk+a

m m a m mn

n=o n - _

_ I _ In Fc n_
z- a os-a- z

"=° d

/ dn_

2
with I I cos _ z dz

n (1 + g:)d o

im nit n_

i¥ k u F' -b --_--/- rr_o o n m mn--_ G CO s --_-z =

(1-41)

o<z<d
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Since Eq. 1-41 only holds over the range o -<z -<d, multiply both sides
_w

of the expression by cos _ z and integrate over the orthogonal range.
The result is :

-i

'c  mk )Cndk+c uH {2} dk -m i¥ k u F' a ----m m n a o o n m mn
_CO _00

im nw G b - In
a d- m mn-

(I-42)

Substitute now Eq. I-Z8 for b Eq. 1-27 for a and Eq. 1-24 for c ,mn' mn' m

we get:

V _H (2)'
• m m Z kd dk

-i¥ k --_--_ _ sinc +i_

o o ,_ O H _') TT o
_c_ m

2 Vm ¢ H dk+i ¥ F'
m k2 (Z)
__ m . 2 kd k m Z___A

ka _ _=77 's_nc 2 u o OFm Udn mn
o - m

_o f.CTr'_2 -

" _ _ H (2)' .,. m 2 _k 2 Hm 1-_]_-_7 _ dk

¥°k°_=l%'_'--_-_C'_'%-d_'-¥°-®m --ka _ ?m/_ _7Hm _ l-_-_f "_'C° _

o

I
n

2wa

+/' (14_)--(Jm'_ H_ -jL_nu') m m Snd_=1 _co m _oo J

(I-43)

If d (k) is expressed in terms of A 's as discussed in Appendix I-t3
m mn

then Eq. 1-43 yields an infinite set of equations corresponding to the dis-

crete value s taken on byn. Formally, at least such set of equations yields

the value of the remaining unknown coefficients A , and give s us a solution
mn

i-Z1



for the complete set of modes, both angular (m) and in the z-direction (n).

C. Derivation of the Modal A_erture Admittance

th
The aperture admittance for the m angular mode

y _ 1 _ I (I-44)
m Z V

m rn

is obtained from the first equation of the set 1-43, that is for L,n=o. After

some manipulation, we get

Io Yrn I k i H (2)'

-o_m=_o =_ o_
L -_

m * dk
2_ koa 7 C_'C° -6-"

_=I m _ m

+i

+ 2'r:a

sinc z kd dk m 2 ¢_ Hrn(2) k z 2 kddk 2_d _-_-Iv u_ mj

2_4Z Am_ ? Hm(2} ,-_ k2 C;Co dk

o L=I
0

co

uZH(Z)S dk
drn m n ¢o G' co H (2)

_0 Vm : C_ C n_:| (I+6 )u_. - rn

(i-45)

The foregoing expression deserves some explanation. It is the aperture

th
admittance of the gap antenna for the m angular mode when all the

higher mode contribution in the z-direction are taken into account.
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!
I

I

I
The first square bracket obtained by the _.=o terms gives the contribution

to the admittance for the zeroth-order z-modes. In other words, it is

the admittance due to uniform fields in the z-direction in the gap inter-

face. The third term in the first square bracket is the radial waveguide

cavity admittance or internal admittance, and the other two terms in the

same bracket are the admittance contribution from the outer region.

Hence, we expect these two terms to have a resistive part in order to

account for the radiation resistance of the antenna. By the same token

the third term should be purely reactive since we have neglected wall

and dielectric losses in the internal cavity. We shall see later on that

our analysis corffirms our expectations.

The second square bracket is the admittance contribution caused by field

variations in the z-direction in the gap interface. However, it is difficult

at this stage to interpret each term physically without any further calcu-

lations.

Uniform Current Excitation

Expression 1-45 for the modal admittance Yfn is greatly simplified if

the gap width d is much smaller than the free space wavelength, lo"

Under this condition, the current distribution I along the feed wire

bridging the gap can be assumed uniform, that is independent of the z-

coordinate, Then for each mode m, we have a current sheath J around
zm

the gap periphery which is independent of z. The electric field across the

gap resulting from this current density is also independent of z at the

interface. It follows that the locally induced magnetic field at the inter-

face does not vary along the gap width. Pursuing this reasoning further,

we see that only a z-dependent H6 could produce an Ep component and

this one in turn would produce an H . We may conclude that in thez

absence of z-dependent field components no H -component is generated
' Z

at the gap interface. This conclusion is further strengthened by the

fact that H must vanish at the top and bottom plates, hence must vary
z
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with z° If z-variation is ruled out, so is an H -component, and no H -
Z Z

mode can be supported at the gap interface with uniform current excita-

tion in the feed wire. From Eq. I-ll the absence of H -modes implies
Z

n=o and the small gap antenna (d<_ o) only supports the fundamental

E -mode at the inner guide interface that is the components E I
Z ' ' zmo '

H%mo' HImo"

Note that the 2 sets of mode E z, H z, and all the six components are

present in the outer region, although Hzm , Epm , E6m vanish over the

gap. Having ruled out the existence of higher modes in the z-direction

at the gap, we may eliminate all modes given by n#o, for any m number

in Eq. 1-45. The final expression for the modal admittance is

Ym m 2 kd dk rn 2 _ 2kddk

= i sine _( sinco _. __ H(ua) -_-u- k-'_ u uo H (2 ua)
_¢o m

z_Z Fm(koa_

(_-46)

If Y is broken up into a conductance G
m m

aperture impedance Z is given by
a

and susceptance B m, the total

00 ,3C,
B

Gm - i ,) (I-47)_ =Z 1 Z ( ma _ =: 9m G _ + B 2 G 2 +B 2
m=o m=o m m m m

In order to break up Y into real and imaginary parts, we rewrite the
m

ratios of Hankel functions in the integrand of Eq. 1-46 as follows:

H (2)'(ua) Jrn(ua) Jm (ua) + Nm(ua)Nm(ua) 2
m _ -i

i
1-24
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I

I

I

I

I

H (2)(ua) _¢u.)a_(u,)+_(ua)N_¢ua)m 2

H (2)(ua) I_z)'(u,) I_ +m ' _ua IHm(Z)'(_ua)'l_
(I-48b)

In arriving at the preceding expression, we made use of the Wronskian

relation for cylindrical functions. Substitution in Eq. 1-46 yields:

\ m In m -ainc kd/2 - sinc2kd/2 7 -_"
,i ko. l_.)® lu_Z)l,_)iz "¢ _- IH_Z)'(u.)lz

F !

2T m (koa) }"F'5
o Fm(koa}

(I-49)

The terms in the bracket still contain both real and imaginary part;

the two expressions in the curly bracket cannot yet be identified as

real and imaginary respectively. Further manipulations are required,

in particular, breaking up the range of integration since the argument

of the integrand takes on reai or imaginary value according to this

range. Since,

U = - 0 "

is a multivalued function, it is common practice to select the proper

branch of the complex m_rnber u on physical ground. It is done by

(i-50)
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demanding exponential decay of the asymptotic form of the Hankel

function asp-_ oo for Ikl > k o, i.e.,

= iup __ - i[-i_ k 2 - k2 ] P (1-51)H (2) e e o
m

and selecting the value of ufor Ikl<k ° on the same branch. Actually, as

shown in Appendix D, one needs not to appeal to physical reasoning. The

only restriction is that both values of u for Ikl<k and Ik[ > k must lie
o o

on the same branch. If we select the first branch, we get

u= +_k oz _ k 2 Ikl< ko (I-52a)

u =- i_k 2 -k 2 Ikl> k (I-52b)
o o

The argument of the cylindrical functions in the integrand takes on the

value s

U = k ° o
(I-53a)

-iu=-iqlkz-kZl IkI>k
o o

(i-53b)

Using the following relations

2 .m÷l
Hm(Z) (-iU)= ;.._ _m(U)

Hm(Z)' (-iU) = - im FZK'm(U)

(I-54a)

(I-54b)
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and the fact that the integrand is an even function of k we get

® Z Xdo

" zxd° dx f sinc -----_--- x2 dx _sinc T + m Z

sinc _ 13__x2

F' (a o)Zf m

2 Xdo

sinc "-'T- --

K_n (aox2_-_- l) Z x d o clx-- - sinc

x z dx :Kin(aS) Z xdo xZdx

(I-55)

after having introduced the normalized variables

k
x=_--

0

a =ka
O O

(I-56)

(I-57a)

d =kd
0 0

(I-57b)

r
o = k ° Do (not shown explicitly but implicit in the definition

of F )
m

(I-57c)
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The first curly bracket of Eq. 1-55 is the antenna aperture conductance,

and the second bracket represents its susceptance since all the functions

in the integrand are real. The last term of the 2nd curly bracket is the

internal susceptance contributed by the radial waveguide.

4.2 Computations of the Input Impedance With No Plasma Coating

e i
G B B
m m m

Expression 1-55 is broken up into three parts:_ , ¥ , ¥ ,
• O O

normalized conductance, external susceptance an°d internal susceptance,

respectively. The three expressions were programmed on an IBM 704

for the following cases:
G

o (program details are givena. m=o for the conductance,

in Appendix I-E , in pert lcular, a plot of°the integrand in Fig. E-I).
B e
o

b. m=ofor the external susceptance, _ (program details

are given in Appendix l-F). o i
B

m (no
c. m=o, I, ..... 9 for the internal susceptance

program details are given because of its simplicity), o

Ao

G
O

Conductance
o

Under the small gap approximation, the conductance for all modes

m, is approximately independent of _he gap width, d (as long as 2 ;_ <<i)

but varies linearly with the circumference of the cylinder measured in

terms of the wavelength. The results are illustrated in Fig. I-4a. A

Z5 % increase in cylinder circumference produces an equivalent ]9 %

increase input conductance, for a given wavelength. For fixed cylinder

size, a 2:1 decrease in operating wavelength increase_approximately the

input conductance byZ:l. Tneradiation resistance has also been calculated;
Y

it is simply the inverse of the conductance, _ , since all reactance

is tuned out, and the higher modal conductanc°does not contribute to

radiation. The results are plotted in Fig. I-4b showing that perfect

match to a 50 _ coaxial feed is possible for a gap having a circumference
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of exactly two wavelengths.

B. External Susceptance,

B i
O

¥
o

The external susceptance for m:o is plotted in Fig. I-5. It is not only

a function of the circumference measured wavelength, but also of the

gap width even for small gaps. The zero order external susceptance

is inductive over the range of a° considered. It decreases linearly as

the number of wavelengths around the circumference increases. It

increases, not linearly with increased gap width expressed in wave-

lengths. Relative changes in gap width change

same change in circumference.

i
B

m
C. Internal Susceptance, ¥

o

Because of the simplicity of the expression,

B e much less than the
o

!

B i F (ao)a m
m - Z_g
o Fm(a o)

modal susceptances with mode number all the way up to 9 were computed.

The results are shown in Eqs. I-6 to I-8as a function of the ratio of

the spacer-to-cylinder radius, r (identical to its ratio in terms of
r

wavelength _m_ ) with normalized cylinder radius and gap width a
a ' o
O

and d as running parameters. Several significant results come out
o

from these curves. First, as predicted by physical reasoning and

shown in Appendix I-G, the limiting values of susceptance for spacer

radius infinitesimally small and i_llnitesimally close to the gap radius

are capacitive and inductive respectively. One would expect that for

some suitable spacer radius, the capacitive internal susceptance would

cancel the inductive external one, thus presenting to the antenna Lnput

the best conditions for radiation, namely, lowest possible VSWR. Of

course, under these conditions unity standing wave ratio is not

necessarily achieved unless the input resistance matches the coaxial

feed characteristic impedance. As shown in Section 4.4, perfect
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match does occur for a cylinder Z wavelengths in circumference.

Another interesting feature displayed by the curves is the rapidity at
which the susceptance increases in absolute value with increase in

circumference a . Many other interesting aspects about the behavior
i o

of B can be obtained from careful observations of these families ofm
curves. However, all the pertinent information is explicit in these

graphs and we shall not discuss them anymore.

4.3 Measurement of the Input Impedance, Z. With No Plasma Coating
in

In order to confirm the preceding theoretical results, measurements

were made ona model scaledup from its original 260 Mc to a frequency

of i090 Mc. In short, a scaling factor of 495 .Photographs of the

model are shown in Figs. 1-10a and 1-10b. Mechanical drawings for

the model and the feed detail are given in Figs. I-lla and I-llb.

Because of lack of time, a special scaled-up feed could not be con-

structed (none are available commercially). Instead, a standard RG-14Z

coax was used with the idea that if there was good agreement between

theory and experiment, feed scaling was not an important factor, It

turns out from the discussion in the next section that this is the case.

The VSWR measurements are given in Tables I-1 to I-4 for different

gap widths and spacer diameters as well as frequencies. In order toachieve

awide variety of normalized spacer parameters and gap width, the

frequency was varied. The measurements were made by shorting the

antenna terminal and noting the shift in node after removal of the

shorting stub. It is very important to note how the shorting was done

because as discussed in the next section, it accounts for the independence

of the antenna input impedance on the feed reactance, Zf. Details of

the shorting stub are shown in Figs. 1-11b.

From VSWR measurements, the corresponding impedances are plotted

on 50_ Smith Charts and shown in Figs. 1-12, 1-13, 1-14 and 1-15. The
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FEED DETAIL

SOLDER;

L

COPPER SPACER
DISC

R G 142 /U 50 OHM COAXIAL CABLE

( _ 18" LONG )

TYPE N PLUG

REFERENCE SHORT DETAIL

SPLIT BRASS CYLINDER CLAMPED BETWEEN

UPPER AND LOWER PLATES

FIGURE ll-b
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TABLE I- 1

VSWR MEASUREMENTS

Data: I" Diameter, 7/32" Thick Spacer; 6" Diameter Antenna

Frequenc_

i000 (_

1020 (_

1060 (_

1I00 (_

1140 _)

1180 (_

1220 (_

1260 (_

1300

1340 (_

1380Q

1420

1460 O

1500_

28. ii

30.54

20.67

25.17

30.72

24.58

29.21

22.02

25.81

28.94

Short

Null

CM
Shift X

23.56

25.62

15.87

2O. O9

23.60

14.31

18.09

21.96

25.32

28.17

4.55

4.92

4.80

5.08

7.12

10.27

II. 12

.06

•49

.77

29.98

29.38

28.26

27.25

26.33

25.42

24.58

23.82

23.07

ZZ. 36

Zi.71

2i _".U'J

20.52

19.96

Toward
Generator
X
Shift

•152

•168

.170

.186

.271

•403

•454

.0025

.021

•0 345

VSWR

5.4

5.3

4.8

3.0

1.55

1.75

1.90

Z. 50

4.30

5.80
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TABLE l-Z

VSWR MEASUREMENTS

Data: 2" Diameter, 7/32" Thick Spacer; 6" Diameter Antenna

Frequency

I000
I020

1060

II00
1140

1180

I220 0
1260

1300

1340 (_

1380 Q

1420 ([_

1460

1500 Q

Antenna
Null

28.70

30.40

19.32

22.98

26.72

31.10

22.70

26.10

17.58

29.00

30.05

23.23

27.30

30,20

Short

Null

CM

Shift X

23.56

25.62

15.87

20.09

23.60

27.00

18.09

21.96

13.78

28.17

19.91

23.06

26.37

29.19

5.14

4.78

3.45

2.89

4.12

4.10

4.61

4.14

3.80

.83

i0.14

,.17

..93

1.01

29.98

29.38

28.26

27.25

26.33

25.42

24.58

23.82

23.07

22.36

21.71

21.09

20.52

19.96

Generator

_hift

•172

•163

•122

•106

•157

.161

•188

•174

,165

.038

•468

.008

.045

.5O6

2.6

2.2

2.8

4.0

4.2

3.4

3.1

2.7

1.8

1,05

1.45

I.6o

2.5

4.0
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TABLE I-3

VSWR MEASUREMENTS

Data: E" Diameter, 6/32" Thick Spacer; 6" Diameter Antenna

Frequency

I000 0

10Z0 Q

1060

Ii00

1140

1180

IZZ0

lZ6O

1300

1340 (_

1380

14ZU 0

1460 Q

1500

Antenna
Null

28.94

30.83

19,20

22.76

26.57

30.94

22.67

26.15

29.30

26.05

29.79

_D, UU

27.18

30.20

Short
Null

23.56

25.62

15.87

20.09

23.60

27.00

18.09

21.96

25.32

17.00

19.91

1_*JJ

26.37

29.19

CM

Shift

5.38

5.23

3.33

2.67

2.97

3.94

4.58:

4.19

3.98

9.05

9,88

I0, 47

.81

1.01

k

29.98

29.38

28.26

27.25

26.33

25.42

24.58

23.82

23.07

22.36

21.71

21.09

20.52

19.96

Toward
G ene rator

}hilt

•180

•178

.118

.098

.113

•155

.186

•176

.17Z

.405

.455

•495

.039

.051

VSWR

Z•5

7.0

2.3

3.8

4.4

3.6

3.2

2.9

1.7

I.i

1.6

1.8

2.7

4.4
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TABLE I-4

VSWR MEASUREMENTS

Data: 2" Diameter, 7/32" Thick Spacer; 6" Diameter Antenna

Frequency
Mc _:

• 09

>

97O 3.8

98O 3.6

990 3.1

i000 3.O

1010 2.9

1020 2.7

1030 2.7

1040 2.7

1050 2.751

i060 3.O

1070 3.1

1080 3.35

1090 3.7

ii00 4.2

Minimum

Position

25.68

27.05

28.37

29.30

30.30

31.15

Null

Position

No. 1

20. I0

21.22

22.25

23.24

24.28

25.30

.34 ii

.43

.56

.65

.75

.70

.59

.46

31.96 26

32.70 27

33.45 28

34.13 29

34.75 30

35.50 31

36.35 32

23.36 33

Null
Position

No. 2

35.54

36.5O

37.38

38.22

39. i0

40.00

.77

13.00

14.30

15.50

16.73

17.85

18.85

19.82

2

cm.

15.44

15.28

15.13

14.98

14.82

14.70

14.57

14.43

14.26

14.15

14.02

13.85

13.74

13.64

_= Shift

Toward

Generator

5.58 cm

5.83

6.12

6.O6

6.02

5.85

5.62

5.27

4.89

4• 48

4.00

3.80

3.76

3.54

• 181

•191

• 202

• 202

• 203

• 199

.193

• 183

• 172

•158

.143

.137

•137

•130
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INI:_i)AIICE COORBtNATES--S_OHN O-IARA_ INPIEDANCE

\

_11, , diameter-X,, I

7/32" widthj :_ Spacer

6" Diameter Antenna

FIGURE I- I?-

IMPEDANCE PLOT OF L-BAND CYLINDRICAL GAP ANTENNA

1-45



IMPEDANCE COORDINATES--SO-OHM CHARACTERISTIC IMPEDANCE

g" diameter%

7/3Z" widthJ Spacer

6" Diameter Antenna

FIGURE I- 13

IMPEDANCE PLOT OF L-BAND CYLINDRICAL GAP ANTENNA
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)

IMPEDANCE CC_P.DINATES--s0-OHM CHAI_CTERISTIC I/_r.DANCE

6" Diameter Antenna

FIGURE I- 14

IMPEDANCE PLOT OF L-BAND CYLINDRICAL GAP ANTENNA
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IMPEDANCE COORDINATES--S0-OHM CHARACTERISTICIMPEDANCE

ii! 'RADIALLY SCALED PARAMETERS _a ,_'_T.' •1_

J'_"_-arU_'--_T--L'rL'% '', ',', ', ..... 0_,,,,,,,,,,,_,,,, ......................

TOWARD GENE_ATOR_ _--TOWARO LOAD i o o o _ o I _6_

.._ o_ o, , o ........
I

2" diamete r_

7/32" widthJ Spacer

6" Diameter Antenna

FIGURE I- 15

IMPEDANCE PLOT OF L-BAND CYLINDRICAL GAP ANTENNA
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resultant VSWR measurements and impedance plots show that a

minimum VSWR (Table I-_) was obtained at 1340 Mc. The corresponding

impedance point (Point # 10 , Fig. 1-13) is nearly 50 _ all resistive.

Hence, excellent matching is possible with the proper spacer diameter

and gap width. The corresponding impedance bandwidth, extrapolated

from Table I-Z is 10% within Z:I VSWR. This seems to be sufficient

for VHF Telemetry performance, at least in the absence of plasma.

It remains to determine if the plasma normally encountered in flight is

capable of mistuning the antenna (by reactive loading} sufficiently so

that the information bandwidth is shifted out of the impedance bandwidth.

(Sketch I-S1 below.) This will be determined in the future when com-

putations are carried for the plasma coated case.

No Plasnz_,a_

Info rmation
Bandwidth

i ;
I t
i I
i

w

/

I

I_.pedance [

Bandwidth

i
i
I

I

i \
Plasma

]_'requency

FIGURE I-S1

EFFECT OF PLASMA ON ANTENNA MISTUNING
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4.4 Comparison of Measured and Calculated Values for Z.
in

With No Plasma

As one is interested in the matched performance of the antenna, we

have selected for comparison between theory and experiment the

combination of parameters that gave the lowest VSWR, namely 1.05.

The corresponding parameters are as follows:

f = 1340 Mc _, = 8.81 in.
o

a = 3" a = 2.13 - 2?ta
o

7 .
d =_ d = .156 - Zy°d

o )t o

Do = 1" ro = .713 = _^
o

(i-58)

For the particular feed detail shown in Fig. I-llb, we see that the outer

to inner coax diameter ratio is approximately 3:1.

From the geometry of the problem, we estimate that the feed reactance

given byEq. I-9 ,

rz_ _
Zf = i 377 o #.n rl X'_ (I-9)

and corresponding to a coaxial inductor is approximately an upper bound

to the feed reactance. For the above parameters, we get

zf~i 9_

a agrees with the measured

is close to fulfilling the inequality,

As we shall see shortly, the calculated Z

value of 50 _so that Zf

iz,l..iz.
In addition, from the nature of the VSWR measurement, it would seem ' that

the contribution of the feed impedance has been almost completely

1-50



eliminated. This is so because in making the measurement, the antenna

is not shorted at the feed input terminals (bottom plate), but at the top

plate• The shorting stub as seen from Fig•!-llbis essentially the outer

conductor of a coax (with the dielectric removed) and has an inductive

reactance very nearly equal to the feed impedance estimated via Eq.

(I-9), In shorting the antenna with this stub, the feed impedance is

essentially by-passed, because it is nearly equal to the stub reactance

and the reference plane is at the top plate. One is, in essence,

measuring the antenna aperture Z a. The measured and calculated

values of reactance as shown below do not differ by more than Z4%.

Since the estimation of the feed impedance, Zf is probably not more

accurate than within a factor of Z, this percent difference is too small

to account for the uncertainty in the feed impedance value. We conclude

that the measurement performed is not affected significantly by Zf and

is to a good approximation a measurement of the antenna aperture alone.

Had we wanted to short the feed terminals at the input, that is at the

lower plate, the shorting stub inside diameter should have been equal

to the feed wire outer diameter.

The computer results for the parameters given in Eq• (I-58) are shown

in Appendix I-H. In addition, the internal susceptance is plotted for

these parameters as a function of r/a in Fig. I-9, labeled Hardware

C__se. The resultant calculated values are given below,

e i i

Bo B° =ilZ.3 _ B1G° 8. Z3 iq - -i 14.8 _) :6 _ ¥_--= , ¥
O O O O

- i6.7_

The input impedance up to 1st order is:

Z. 1
In _ 1 + (1-59)

s° 8.z3-1(14.S-lZ.3) G 1 + i(B - 6.7)

* If the feed impedance were exactly equal to the shorting stub,

then the measurement as described would yield the antenna aperture

impedance, Z
a

1-51
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G 1 and Bel have not been calculated. Assume that the second term of

(I-5_is negligible compared to the first term. This is justified if the

resultant impedance is in good agreement with the measured value.

Under these conditions

Z = 377
in 8.23 - i 2.5 = ( 42 + ilZ.7)

The corresponding-standing wave ratio is

VSWR = I. 39
calculated

which compares favorably with the measured value. Bringing in the Ist

order contribution to Z. will increase the equivalent resistance to a
In

value higher than 4Z _ since G 1 >0; it will improve the match if we

assume the 2nd order total susceptance nearly cancels out. At any

rate, the discrepancy between measured and calculated VSWR is less

than 25%. As we shall see, it must be attributed to the fact that the

higher mode impedance was not calculated. This is so because if we go

to the extent of considering our reactance calculation invalid, we must

accept the fact that the total susceptance is nearly zero since the

measured VSWR is almost unity. It follows that the calculated Z.in

Z

Z. o
in=_ ---.,._= 46 &%

0

Z. can now be identified with the antenna radiation resistance. The
in

corresponding VSWR is 50/46 or 1.09 which differs by not more than

4% with the measured value. The nominal impedance of the coaxial

line is only known within + Z _, corresponding to an accuracy of 4%;

the predicted theoretical value is then well within the experimental

unce rtainty.
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4.5 APERTURE IMPEDANCE IN THE PRESENCE OF A

NONHOMOGENEOUS PLASMA

The plasma model under consideration is represented by a radially

varying dielectric uniform, in the _0 and z-direction.

The approach we follow is the one developed by C. T. Swift*. The

plasma is subdivided in n-concentric cylindrical sheaths. Each

sheath is taken to have a uniform plasma and collision frequency equal

to its average through the sheath.

The fields in the radial waveguide are matched at the interface to those

in the first sheath. The field transforms in each sheath are no longer

forward traveling waves expressed in terms of Hankel functions. They

are standing waves consisting of the linear superposition of Hankel and

Bessel functions. Only n = o modes are considered. From Eq. (I-11)

we get for Region I and the first sheath of Region II:

Region I

V
E 1 _ m

Zm d

V F' (koP)HI :
em o d F (k o)

rn o

V

m = -i _ m mo ko d (I- 60)

:_ C.T. Swift, "Radiation from Slotted-Cylinder Antennas Coated

with Concentric Layers of Dielectric Material, " M. Sc. Thesis.,

Virginia Polytechnic Institute, April, 1965.
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Region II

EIll = u_ _IZm rn

HIIl = - i¥ _i' km _I
_Om okolUl m - -p-- rn

rn _I + ikUl_;l IHIII = " ¥ kol p- rn rn
pm o I

(I-61)

_lllzm = u21 _Im

-_II1 _ km _1 + i Z k ° Ul_; _
_om p m o 1 1

_III = iku I _i' + Z ko m 1pm m oi i_-_m (I-6Z)
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The foregoing expressions for Region I were obtained after making the

sub s titution

Z k 2U =
0 0

2 Vm
u a F (UoO) -o mo mo d

In Region II, the forward traveling waves in equation (I-11) were replaced

by the standing waves, i.e.,

rn

cm{k)H(m2)(uO) -_ _l{k, uD) = a 1 {k}Jm(Ul0) + A 1 (k)H!2) (UlO}
• m m m

dm(k)H )(u,O) -" _¢m(k, uO) = b (k)Jm(UlO) + Blm(k)H(Z)(u'P)m 1

and _1m are derivatives with respect to the argument (UlP).

#

(I-63)

We now express the modal aperture admittance Y
m

unknown coefficient by demanding that

in terms of these

HII 1 H I _ I- 0 < z < d (I-64)
(Dm _m 2_'a

Using the expressions (I-60) and 1-61) we get

CO

a 1 ], 1 ' ikz m lmj m-i _: k (u.a)+A H (2) (ula) u e dk--- b (ula)
o 1 o 1 __ m m l m m 1 a __

lm _)(ul+ B H a) e ikz
Fm(koa ) V

kdk + i ¥ rn _ I

o Fm(kba) d 2rra
O_<z_<d

(I-65)

* The field expressions are different from Swift because the factor
1

is absorbed in the coefficients am(k), A_(k), b_(k), B_(k).
i°a_o¢ 1

Furthermore, we built up the fields out of eimCe ikz while Swift uses

negative exponents. Our expressions can be converted to Swift's by

-'=-";" field fv_nsforms by 0JUoE ! and changing m and k into -m and -k.u_ v_,_Ing all ___
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In order to eliminate the dependence on z, we integrate from o to d

on both sides of the equation using the relation (I-16a):

d

1 f eikz-_ dk = Co(k)

O

(I- 16c)

We finally have

-i¥
O 1 k°l. am J'm {ula) ÷ Alm H(Z) iu'a)]m 1 UlCo (k)

dk

00

a

--00

[bI J + B 1 H (2) (ula)]k dkm (ula) m m Co(k)

+iN
O

F' Vm (koa) m I

F (koa) d 2 _ a
m

(I-66)

In order to find Y
m

and B 1 in terms of
m

we must express the 4 coefficients

V • This is done as follows.
m

1 1 1

a m, A m, b m,

.j-

As shown by Swift ' a Transfer Function can be developed which

1 1 1 B 1
relates via a 4 x 4 matrix the unknown coefficients, am' Am' bm' m

in the first sheath to the free space coefficients Cm, dm beyond the

last sheath. The transfer function depends only on the values of Jm(UiPi)

and Hm(UiPi) at each sheath and the corresponding plasma parameters.

The matrix coefficients are labeled Cjk. Their values are given in the

cited reference. The following relation holds among these coefficients.

*See Footnote of preceding page.
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J

1
a
m

A 1
m

b 1
m

B 1
m

m

CII C12 C13 C14

C21 CZ2 C23 C24

c31 C3z c33 c34

C41 C42 C43 C44

0

C
m

d
m

(1-67)

The preceding equations reduces the number of unknowns from 4 to 2.

We now avail ourselves of the two tangential boundary conditions at the

antenna surface, namely,

V

mzm = _ C (k)

(I-68)

n

E = 0
_0m

which allows expressing the unknown coefficient c
m

1 A 1 , b I , and B 1 in terms of V .
sequently, am, m m m m

now follows.

and d and con-
m

The derivation

From (1-67) we have

I
a
m

A 1
m

b I =
m

B 1 =
m

C12 c + dm C14 m

C2Z c + dm CZ4 m

C32 c + dm C34 m

C42 c + dm C44 m

(I-69)
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From (I-,66), '(I-68), and (I-6Z) we get after t_sing (I-69)

c H (2) u a"

ICIZJm(Ul a) + C22 m (I)_ c /m + :'_Cl4 Jm(Ul a)

V

+ Cz4H{m2)(ula)> d - m :
m 2_Ul 2 C (k)

(I-70!

(

H (2)' ÷ i m k [ C12 Jm(Ula )
(C32Jm(Ul a)+ C42 m ¥oi ula kol

/ t J' a)+ H (z)' a) (I-71)
+ CzzH(Z)m (Ul a) Cm + C34 m(Ul C44 m (Ul

[ im k C14Jm(Ula)+Cz4 m (Ul
+ i _olu la kol

d =0
m

1 A 1 '
Solving for c and d in terms of V and expressing a m,m m m m

bin,--B 1 in terms of V via(l-70,71) we getafter substitution in (I-61)" and
m m

a few manipulations the following expression for the modal antenna

aperture admittance covered with plasma.

/

¥
m

i_ol

+ (CzzC44-Cz4C42) ! m

--QD

I )+ j, H(Z)' o o dk

\CzzC34-Cz4C32 m m _ u I

co

2 I"

( )CIZC44-C14C42 j H(2) CoCo -.---- dk

+ ICzzC34- C24C32 m m _ u21 uU

I

2_a F' m

[ m

2

(I-7Z)

where _ the determinant of the 4 x 4 matrix in (I-6)is give_ by:
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!

I _= (CIzC34-CI4C3z)Jm J'
m

+(c 12 C44 - C14 C42) Jm H(2)'m

+ (C22 C34 - CZ4 C32) Jm H(2) + (C22 C44 - C24 C4Z) H (2) H(2)'m m m

(1-73)

it being understood that the arguments of the cylindrical functions is
7_/ z 2

ula = (Vkol - k ) a. kol is the wavenumber in the first plasma

sheath adjacent to the antenna.

As a partial check on the validity of expression 1-72 we remove the

plasma, in which case

Ciz = C14 = C24 = C32 = C34 = C42 = 0,

CZZ = C44 = l,

k = k o, u I = u (I-74)ol

The admittance now reduces to

¥ ( =..(2),
I-I

i %:oI °a Co
- m

F' (koa)_
a m

- Z_ d Fm (koa)_

* 2 kd
where C C = sinc

D

O O £

2
C dk m
o k a

O

_H(2)
--m C _:'C dk

JH--q27r o ou
--CO m

(:-75)

Equation (1-75) is identical with (I-46)
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4.6 CYLINDRICAL GAP ANTENNA RADIATION CHARACTERISTICS

The derivation of the radiation fields starting from their Fourier

Transform is elementary. The inverse transform is evaluated by

stationary phase technique yielding for each direction 0, only one

value of k,

k = - k cos @ (I-76)
S O

If we form Poynting Vector, S r to get the radiated power per un:it area

(watts/m Z) vve get in terms of the coefficients Cm(k s) and din(ks):

oo

Sr:_r )4 sin4@ I I cos(m-m')_0 o ICm(ks)I2+ Zoldm(ks ) 2

o m:0 m'=0 (I- 77)

r is the distance from the antenna to a point in the far field. From

Eqs. (I-Z4) and (I-32) for the case of uniform current in the feed (n=o)

we get for Cm(k s) and dm(k s)

Z
V sin c k d/Z

m s (I-78)

Cm(ks) = --2_ 2 H (2) (Usa)
Us m

Z
V k sin c k d/2

dm ks m m s s (I- 79)( ) = -i ¥o --_w u a k 2 (2)' --
H (Usa)S 0 U s m

Also,

-_o z k z sin @ (I-80)U s - = k 0

2
we now neglect the term sin c

the unknown modal voltage V
m

k d

o < 1;we express
k d/Z because 0 < T

in terms of the calculated aperture
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impedance Z and the specified exciting current, Iam '

V =-I Z
m am

Using the relations

p = r sinO

z = r cos O,

manipulating all of the above in (I-7_finally gives

O0 OD

s- 2 12I Iz2  cos,m- ,O
r (21r r) 2 am o

m=O m'=O

(I-8I)

(I-82a)

(I-8Zb)

2 Z
1 m cos O

m (k ° a sin O) o sin 0 )' (k °
!Z

a sin O)[

(1-8,3)

This is Poynting Vector for the radiated power per unit area at an

arbitrary distance r in the far-zone in a specified direction 0,¢. Note

that no power is radiated in the direction O = o, y, that is along the

cylinder axis. Maximum power is radiated perpendicular to the gap,

in the equatorial plane, O = _. Radiation patterns were obtained

experimentally on the L-band scale model (1090 Mc) and are shown

in Figs. 1-16 to I-'19; the measurement data is described in Table I-5.

However, we have not attempted to compare the predicted values from

the foregoing equation with the measured values because the field

patterns as it is evident from the Figures, exhibit unreliable behavior.

In particular, the patterns do not show any tendency to null for 0 = o, ?r

in the elevation plane. This is undoubtedly due to the finite length of

the cylinder which measures a little over lZ-inches or approximately

one wavelength at 1090 Mc. End effects then swamp out the behavior
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FIGURE I- 16

ELEVATION PLANE RADIATION PATTERN OF CYLINDRICAL

GAP ANTENNA WITH ONE FEED
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0 ° 10 °

250'

230 °

210

(:,-r_le_- Dis(: Diameter i"

(;ap Widtb 7/32"

Feed Location at _ = 0

f = 1, 090 Mc

e = rr/2

?I(-;IJRF i-! 7

.[';QU ATORIA[, PLANE RADIATION PATTERN Oi_' CYi.INDP _.C:_._.
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Center Disc Diameter I 3/4"

Gap Width 7/32"

LSOe

f = i, 290 Mc

80 °

110"

FIGURE 1-18

ELEVATION PLANE RADIATION PATTERN OF CYLINDRICAL

GAP ANTENNA WITH ONE FEED
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I
320 °

330

340 °

350 °

250 ¸

22.(

210'

_go, 180°

Center Disc Diameter 1 3/4" f = 1,290 Mc

Gap Width 7/32" @ = _/2

FIGURE I- 19

EQUATORIAL PLANE RADIATION PATTERN OF CYLINDRICAL

GAP ^ _,T",'_,T_,TA WITH ONE FEED
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TABLE I-5

RADIATION PATTERN MEASUREMENT DATA

Patterns Figures 1-15, 1-16

l" diameter x 7/32" spacer disc

frequency I090 Mc (scaled 4.2:1)

feed point impedance 60 + j 70 ohms

#i Equatorial plane (@ = 90 ° , 4 variable)

#2 Poh_r p_ttern (4 : O, @ variable)

Patterns _igures !-17_ 1-18

1.75 '_diameter x 7/32" spacer disc

frequency 1290 Mc inot scaled)

feed point impedance 50 + j 0 ohms

#3 Equatorial (@ = 90 ° , 4 variable)

#4 Polar (4 = 0°, @ variable)
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one would normally obtain from an equivalent cylinder antenna many

wavelengths long. In addition, the irregularities of the patterns and

the lack of symmetry about the equatorial plane denote the presence of

strong backscatter from the surroundings. This is because the measure-

ments were not made in the open, but in an anechoic chamber. In the

light of these results, we cannot attach much validity to them. In future

programs, experiments should be repeated with longer cylinders and

out in the open.

As a final comment, we note that in spite of the irregular pattern

fluctuations, equatorial plots do show the zone where the single feed

antenna lacks omnidirectionality. It seems that the zone is reduced by

suitable choice of parameters. One should then determine if some

combination of parameters yields the desired omnidirectional coverage,

while maintaining the required impedance of match. If this is possible,

the use of multiple feeds can be avoided.
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APPENDIX I-A

PROPERTIES OF ORTHOGONAL FUNCTIONS C
rl (k) AND Sn (k)

In order to prove the orthogonality of the C n

their definition

's-and S 's we start from
n

ikz n w ikz n w
Cn(k) = e cos --d-- z dz Sn(k) = e sin "a- z dz (A-l)

0

Multiply the above expressions by their respective conjugate of index

and integrate over the range -co < k < co:

.'°

Cn(k)C 4 (k)dk :

d o

= d-_I _co. _ z cos _z' _eik{z Z)dkdzdz

d

= _.w _ n_ _w
d'_ _ co,, _ z co-. T • d=

o

=v

 sn(k)
_m

d =
l

0 _=o

d

= d--_ ,_ sin _z sin-i_ z dz

o

= T

(A-Z)

A-1



Another interesting property is the value of the integral

co

_ Cn(k) ""S_, (k) d k

Using the definitions A-1 we find that the integral vanishes only if the

indices have the same parity (which includes the case L =n). If the

indices have different parity, then

0o .,. L even, n odd

C n (k) S_ (k) dk - 4L for or
d(4 2 - n 2) #. = odd, n even

_00

(A-3)

Another property is the fact that Cn(k) and cos -_- z as well as Sn(k)
nlr

and sin -_- z are transform pairs related by the following transformation:

d

1 _ ikz"i_ (k) = "-d- Fn(Z ) e dz
n

o

(A-4a)

co

d _ - ikz

_CO

dk

nlT

It is readily proved that Cn(k) and cos --d-- ::

So do S (k) and sin nlr
n -_- z.

(A-4b)

fulfill the above relation.

A-2



IO
I

I
I
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APPENDIX I-B

SOLUTION OF THE INTEGRAL EQUATION FOR dm(k)_ _

We shall indicate a method of attack towards the solution of the integral

equation for din(k) and shall given an explicit solution for a simple case.

The integral equation 1-31 for dm(k ) is now recast in the following form:

co

k
d (k}=-i¥ m o 1 _ (kd)2-(nw) 2

m o u----_-k---u2 H(mZ ), _L ko d A C _(ua = 0( )2-(nw)2 mn n

1 , n_ 0 n+snO )ukH(Z)m (ua) = Un(l
(B-D

CO

G_(Una) ._Cn'_(k) dm(k')u'2 H (z) (u'a) S n (k') dk'
Gm(una) m

Multiplying both sides by uk H(Z)'C and integrating with respect to k
m n

give s :

_dm¢k_ukHCZ_'Cmndk- i_oka---__ An_Ck°d_2
__ o 4=0 (kod)Z -(Z_) z

_ k _ _ _ _

Z C_ C n

_ _ u _=0 uz(_+so) Gn_(UP) E (

(B-Z)

dm(l_) u_ Hm{2)(u'a)S4(k')dk'

Here we have used the orthonormal relation 1-18a. We now make use

of the fact that
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k2 k2
--_ = 2 k2u k -

O

and the orthogonal

B-_.

term.

2
k

_ o - 1 (B-3)

k Z-k2
o

condition in the first term of the right hand side of

We also substitute CL(k) for Sn(k) as given by 1-17 in the second

After manipulation we obtain

SdmU k H (2)' n _r u 2)m u _[ ]_[H C dk
n Gm(una} n

m w +6°) (k°d)2 A

= iY ° _--K _( 1 (kodtZo - (nr)2 mn

co _ C_ C dk

-iY m _ 2 _ no _ k° AmL k Z _ k Z
o L=0 - o

(B-4)

The preceding integral equation can be further simplified as shown iA_

the succeeding Appendix IoC where the integral of the form

J-- _mn (k) C i (k) C n (k)dk

6.00

(B-5)

is evaluated. The bar over Finn(k) is to remind us that it is the Fourier

Transform of a function Finn(Z) in k-space. As shown in Appendix I-C

d

wd(L2 - n2) 0

- Fmn(-U ) [(-

L+n nw 4w "]

i) n sin-_-u - L sin-_-u J

1 ) "_ sin _ u - n sin T u

(B-6)

The inverse transform of F(k} -
k Z-k2

O

is

B-2



co 1 iku sin k u
O

k2-k2 e dk = 2_ k 1 (u)
.co O

O

(B-7)

l(u) being the unit step function; substitution of B-7 into B-6 yields for

= C_{k) Cn(k) dk _ (-1) _'+n- 1 _ sin k d

_co_ k20 " k_- ko{,_2 . n 2) o

(B-8)

{(.i)£ £2 + (_l)n n z

(kod)2 - (_,_)Z (kod)2 _ (n_f)Z}

and finally one obtains for B-4:

d m{k)u {k H(r_2) (tza)- Gm{Una) u H(2)(ua)} Cndk
n Grn U'a) m

= iF m _ o (k°d)Z A (B-9)
o koa d (I + 8 ) (k d) 2- (n17)z nan

O

m

- iYo 1_-_
O

co

_=0 L(kod)2- ( '_r)2 {kod)2- (n_r)2 J

If the fields are built up of either symmetric modes (_ and n even) or

asymmetric modes (_. and n odd), then the 2nd term on the right hand

side of B-9 vanishes and the resultant integral equation simplifies to:

_cod m(k)u (k H_ 2) (ua)- nZTr Gm(una) u _(2) (ua)} C n
__ _ "CmiUna) _ Hm

m _ (kod)o
= iYo koa d (I + 6 ) (kod)2 - (n_) 2 mn

dk

(B-10)
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If higher modes are neglected, thenn = o and B-10 reduces to

o_

_dm(k ) u k H (Z)' (ua) C dk = i ¥ m 2_m o o}--_ --d- Amo
__ O (B-ll)

One approach to the solution would be to expand the integrand into an

orthogonal set in terms of C'n(k) function,

dm(k ) u k Hm(2) = 7,4,B LCL _ (k)

and solve for the unknown coefficients B L in terms of Amo. However,

this approach does not work out. Instead we expand the integrand

kZdm(k ) uk Hm(2)' (ua) = B L --_ C L* (k)

4=0 u

Since we are only dealing with one mode, we first try

(B-1Z)

k2 C"
dm(k ) u k H (2)' (ua) = B --Z o (k)

rrl o
u

(B-13)

and substitute it into B-I l -zhich yields after simplification

co

k2B ° --./C ° (k)C O (k) dk
U

_¢o

X..u, J.--_!

B° k 2 _ h Z -1 Cgo Co o _
_ 0

Here we u_ed the fact that B-8 is zero for L = n = o in integrating the

term k°_ in the integrand. The orthogonal relation was used for
k Z-k2

O

B-4



the second term. Equating the right hand sides of B-14 and B-1 1 gives

= - i Y m A (B-1Sa)
Bo o k---_ mo

O

V

m m (B-15b)= -iY ° _
O

where I-Z5 was used to obtain B-15b.

g ive s

Substitution of B-15b into B-1Z

d {k) = - i¥ m k Vm C* (k) (B-I6)
m o ua k o

o 21ruZ H (Z)'{ua)
m

which checks the result obtained in I-3Z when higher modes are neglected.

Although there is no theoreticaI justification for it, one is tempted to use

the expansion B-1Z as a solution of B-10. This will be investigated in

the future.

At any rate, we have a general fornlalation capable of __e!ding the

coefficient dm(k) as a series expansion of coefficients Bmn'S and these

in turn can be expressed in terms of the A 's.mn
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APPENDIX I-C

EVALUATION OF THE WEIGHTED ORTHOGONAL RELATION

We wish to integrate the ext_ession below,

{C-l)

m

the bar over F is to remind us that F is a Fourier Transform of
m mn

a function Fmn(Z ) in k-space. The preceding integral is simplified by

substituting .in: it:: the definitions 1-16 for Cn, C4 . We then have

dd

_ (_ ik(z-z')-_ ,I__ )I 67r nw z' = _mn_l dk dz dz'= a-z cos -_ _.cos -d- (C-Z)
O O

the integral between the parenthesis is immediately recognized as the

Fourier transform of F (z-z') with respect to k ±he resu-L_nL bite---'
mn

yields after trigonometric manipulations

dd

1

O O

Fmn (z-z')cos_6z-nz,,}:_] dz dz'

dd

1

0 0

= 41dz

In order to calculate

(z-z')Cos _%z+nz')_]dzdz

(c-3)

1' we introduce the following change of variables

z - z'= u (C-4)

4,z - nz' = v (C-5)

C-I



The Jacobian of the transformation is

l
J = 6 - n (C-6)

The integration can now be carried out in the u-v plane. The new limits

on the integrals are obtained with the aid of the sketch below.

I

I

I

I

!
Z

o

now becomes in the u-v plane
1

u=o v=Cu+(C-n)d

¢_I - 2(6-n) d 2 Finn(U) du cos-jr dv
u=-d v=nu

u=d nu+{C-n}d

+ .F (u) du cos _-v dv[
mn

":rE_ i,,U=O 2 U

which simplifies after one integration to

o t+n

2wd(%-n) l_mn(U) -I) sin--_- u- sin--_- u du

-d

d

.I [, "° "° "] }+ Finn(U) -1) sin--_- u - sin-d--U du

0

(c-7)

(c-8)

C-Z



One obtains _2 by changing n into -n in all terms of _1 except Finn

o t+n

Fmn(U) -I) sin u + sin u du

-d

d
t+n

-- Fmn(U ) -1) sin_u+ sin_u du

O

The integral _ is

O

-d

t+n tw nw ]Finn(U) -l) 6 sin _ u - n sin --_ u
du

+

d

_ Fmn(U) _ -

O

1) n sin_u-t sin_-- du

(C-9)

(C-10)

which may be rewritten as

d - t+n nw tw

Ird (t"-n") o

t+n tw s_nnW ]}- Fmn(-U) -I) t sin-_- u - n . -'d-U du
(C-11)

Further simplifications are possible for some special cases such as if

the functions Finn(U) is even or odd (corresponding to pure real or

imaginarY_mn(k ) ) and whether the indices t and n are of same or

different parity. We shall not investigate these cases at present but

only take note of the following facts:
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l,

Z.

does not blow up if 6 = n.

For a given
1

n<<_.

g , _ decays as 1 for n>> 6
n

1
and as -_ for
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APPENDIX I-D

REMARKS ON THE CHOICE OF BRANCH FOR __ko2_k2

The value of u over the range -co- < k < co does not have to be selected

ik,_ko,IkI>ko
Thus, for

on physical grounds provided that the pair of values corresponding to

are on the same branch of the complex root u =qk Z-k2.
0

1st branch

r=O

2nd branch

r =I

/

' _/k 2 _k 2[k[<k u =
O O

/ I_l>k o

i lkl>%

u = - i_/k 2 - ko z (D-I)

(D-Z)

u = +iVk2 - ko 2

The second pair of values (r=l) lead to the same value of Yin as can be

seen by direct substitution. However, some of the pertinent manipulations

of the intermediate steps are not trivial because one deals with Hankel

functions of negative arguments. For instance, if we call ] ua [ = x

Use now the identities:

Jm (-x) = (-1)m Jm(X ) (D-4)

H(Z)(enlrix) (_l)mn [H (2) x ]= m ( ) + Zn Jrn(X) and take the branch (D-5)
n = -1"

which means that the complex number +z is -n the 1st or 2nd

quadrant, 0 < @ <-=, hence -z is in the 3rd or 4th, 0> -@ > - =.

D-1



Hm(Z)(__)=(_1)m [Hm(Z)(x)_ 2 Jm(x)
(D-6)

Hm(2)(×) = J (x)-_ N (x) (D-7)

IHm(Z)(-_ ) 12 = (_1) 2m [H(Z )][ z,)(x) - 2$m(X. Hm ( ) (x) - 2Jm(X) =

H (2)(x)H (2) (x)+ 4JrnZ(X ) - 2Jm(X)[H (2)x (Z)* ]= * m ( )+ H {x)
m IT_ .!

(D-8)

= 'Hm (3)(x)]Z'÷4JmZ(x)-ZJm(x) [2Jm(X)] =

IHm(Z)(-x) [2 = [Hm(2)(x) [ 2 (n= -1) (D-9)

Take now the first integrand of 1-46 expanded via 1-48a

{ JmJ_n+ NmNm 1 kd)2 1
i Hm(Z)[z i 2_ua ]Hm(2)[ 2 (sinc _ u

(D-10)

= I- the_'._Note that if we select u b,_ the 2rid branch u -[ul fo. !k I < k c . ....

the preceding integrand becomes

_'ua

]
i 2 _\ kd 2 1

(2)(__)IH Irn )
Jm(-u)J_n(-u )+ Nm(-u)N_n(-u)(-u)I

(D-ll)

Using the fact that

$m(-U)

j_(-u)

= (-i)m Jm(U)

= -(-i)m Ji(u)

(D-IZa)

(D-IZb)

D-2



and D-9 we get for D-11

+
Jm u) Jm (u) + Nm(U)Nm(U) i Z

IH(Z)(u) Iz _ua IHm(Z)(_u >1z ]Csinc_> 2 1 (D-13}
u

identical with D-I I.

Similar reasoning applies to the other integrand of 1-46.
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APPENDIX I-E

PROGRAMMING OF ZEROTH ORDER CONDUCTANCE

FOR CYLINDRICAL GAP ANTENNA

(NESCO Program Number 570)

Butler-Hodara

The real function g to be computed is defined by

4 _1 dx
g - o lH0(2)(ao 1  ]U - 212 (E-l)

where

a :
o

H(2):
O

input parameter s

Hankel function of the second kind of order zero.

The convergency of equation (A-l) may easily be shown and will not be

discussed.

Setting H(Z)o (x) = Jo(X) - j No(X), equation (A-l) may be rewritten as

g = Lim _ + Lim {E-2}
n-'0 (l-x 2) F(x) _-_0 -77 (l-x2)F(x)

2owhere F(x) = j2 -x 2o (ao 1 ) + N (a ° l-x 2) and (<77 << I. Using the

asymptotic expressions for smallargumentsof the Bessel and Neumann

functions of order zero, namely for W = l-x << I,

Jo (aoq 2W) _ 1

2_n ao_ZW
No(a o_ 2W)_ w 2

E-I



The second expression in (A-2) becomes

_W 2vdW _2a2o_Lim - Lira 2w

-*0 ( W %n 2 {2a2o W) (i-_0 (i

Thus (A-l) may be expressed as

dV

V Cn2V

g = Lira 4 i- r/ dx + I

r/-"O --_ 0 (1-x 2) F(x) _n (_

2aor/

(E-4)

The limit in (A-4) ex::J_,tsa,=:d_he computation of g is carried out by

rewriting the integral in (A-4) as a sum of integrals, namely

M-1 1-(. i)(i+l)

"°4 dx + (E-5)

)
i=0 1-(. 1 2a ° r/

where (. 1) -M - r/, and r/ is a given negative power of ten. Each

integral in (A-5) is computed numerically by the familiar trapezoidal

rule and ninety intervals per integral are used. This procedure was

selected after noting the rapidly "ncr_as::ng behavior of the integrand

in the neighborhood of the s:ingu]ar point (x=]). For M>8 an approxi-

mation of the integrand similar to {A-3) is employed giving the

expression

7 1-(o 1) -(i+1)

g _

)-i (i-:_z) _(x)i=O l-(. 1

2_r
+

I

o

where G(x) j2 _ + N 2
= o (ao - o (%

parameter a ° the choice of M ---= 20

-i
M-1 (. 1)

dx

i=8 (.1) -(

_2x). For most values of the

gives an accuracy within .25 percent.

m-2
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1

1 PROGRAM INPUT

FORTRAN Notation

A0:

ETA:

N:

ISTOP:

Kl:

KZ:

Quantity

a
o

_7

M--if M_< 8; 8-- if M-> 8

1 -- if 1st data card; 0 otherwise

1 -- if M > 8; 0 -- otherwise

M-- ifM>8

The format for each data card is (2E16.8, 415).

The FORTRAN statements for this program follow.

E-3
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APPENDIX I-F

PROGRAMMING OF ZEROTH ORDER EXTERNAL SUSCEPTANCE FOR

CYLINDRICAL GAP ANTENNA

Butler-Hodara

The real function F to be computed is defined by

-7 Jo(C ) Jl(C ) + No(C ) NI(C )
o (Jo 2(c) + No z(c) )

xd
sinc2 o

2
r

"_l - x 2

° Z Xdo _ 1

7 ,xo_. 7- -__f"_'-U f(x) dx-

1+7 o 1+ 7

--dx

g(x) dx

(F-l)

where

c:a Vii-x21
O

xd

sinc Z 2 :L xd o _
Z

ao, do: input parameters

J : Bessel Function of order m
m

N : Neumann Function of order m
m

K : Modified Bessel Function of the second kind of order m.
m

Note that although both integrands are unbounded at x = l, the two integrals

cancel near this limit, i.e.,

Lim [1 _77"OJf(x) dx- g(x) dx= 0

1- 7 1

F-1



The convergence of Eq.F-I may easily be shown. The integrals in

F-1 are computed in the following fashion:

1 I-(. 1)-(i+l)F : [__ f(x) dx

i:0 1-.(. 1_-i
g

f x]- g(x) dx + g(x) d

:N-1 i+ (.:)-(:+i) z

where (. I)-N - -8)= ?7, 77 a. _iv_:._:.. n.eg_,.tive power of ten (10 1 > _ ->-I0 ,

and M is a sufficier:.tl? l:_.rge number to obtain convergence, Each

integral in F-Z is computed numerically by the trapezoidal rule,

(F-Z)

Program Input

F o rt ran Notation Quantity

AO: a
o

DO: d
O

-N
ETA: T7 = l0

TACT: .I--constant factor

BI: M--upper limit M

HZ: Ax--step-slze for I """
..J

Z
"']? 7{Fortran Format for this car_.: ..',<._.,1.ZoS} )

NP:

NT:

NTI:

IC:

N-- s_,:'- ETA

Number of ir,te.rva].s pez' ".n.tegral to be used
5.n the evaluation of

!-_ £e

f f(x) dxand j g(x) dx

o 1-+_

T_>tal :number of intervals used in the

evaluation of IV]
t

j g(x) dx
2.

0--evaluate all terms ofEq. F-Z

1--evaluate _ g{x) dx orgy.
F-2



ISTO P: 0--more data to follow

1--last data case

(Fortran Format for this card: (5If0))

The Fortran statements for this program follow.

F-3
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APPENDIX I-G

LIMITING EXPRESSIONS FOR THE INTERNAL MODAL SUSCEPTANCE

The normalized internal modal admittance is given by the last term of

1-55,

¥i B i

m _ i m
¥ _ =ib m

0 o

a F' (a)
=- IZW o m o

do Fm (ao) (G-I)

The normalized susceptance bim is positive (birn > o) if the radial wave-

guide is capacitive. If it is inductive_ the susceptance is negative

(bim<O) The ratio F'm(a°) obtained from 1-12 is
• Fm(ao)

F'm (ao) J'm (ao) Nm (ro) - Jm (r o) N'm (ao)

Fm (ao) - Jm (ao) Nm (ro) - Jm (ro) Nm (ao) (G-Z)

since n = o and Unl =k . Here a and rI o O o
n=o

with respect to the free space wavelength

are the normalized parameters

Z_ D

2wa 'o ZWd
a r d =

o =-_ ' o =--k ' o -X--"
o 0 0

(O-3)

Let us look at some limiting cases of interest•

I. r -'o, that is the shorting post at the center of the inner radial
0

guide becomes infinitesimally thin. From the asymptotic expansions

of J and N for small arguments we find
m m

F' (ao) J'Lim m m (ao)
- (G -4)

r -_0 F (ao) J (ao)o m m

A physical interpretation of the foregoing follows in the case of the

additional restriction a <<I, which corresponds to a quasi-static field
0

G-I



distribution since the circumference is much smaller than the wave-

length (Z_ a <<Xo).

I.I

I r° << 1

a° J' (ao)
Lira m

-.0J (ao)
r° -_0 m
a
o

- o From asymptotic expansions we now find

Substituting (G-5) into

m (O- 5a)=-- m#0
a
o
a o

= "-F- m= 0 (G-5b)
(G-l) gives

b _ 2rt m (G- 6a)
Lira m # o d

o
-.0

r o Z
a _0 _a

o be _ o (G -6b)
o

Note that (G-6b) is positive indicating a capacitive susceptance. In

short, the zero order mode with uniform field distribution around the

gap makes the two plates act as a capacitor. Since ao<<l we should

expect B to reduce to the capacitive susceptance of two plates spaced
o Z

d apart and of area _a . The following confirms our expectation.

Writing
2

. ao (_-

:bo

substituting for a o its value from ( G-3), the fact that
1

and c - we find

Lira Z
_a _

r 0 -_0 B 0 = OJ0 (( _, = OJ0 Co
a -_0
o

with

Z

=(_a
Co ---6-'

(G-V)

2_c
=--

0 OJ°

(o-s)

(G'-9)

the classical formula for parallel circular plate capacitor. Note that

the higher modes are inductive. Starting from ( G-6a) and usi_ag

similar manipulations, we find

G-Z



Lira m

r -* 0 Bm _ 0 - [_df
0

a 0 -- 0

with a corresponding effective inductance, L
m

(G- 10)

d
L : D (G- 1 1)m ?._m

Another case of interest is

2. r ° -*a o, that is the center post fills in almost completely the gap.

Under these conditions, the majority of all current paths, from top to

bottom plate are shorter than ko/4, and the structure should act like

an inductive susceptance to all modes. If

r = a - *7 with _ << 1 (G-12)
0 0

one finds

B i a 1Lim = - 21;-- -- (G-13)
r -*a -_ m d W

0 0

independent of the mode number m.

Finally, in order to assure ourselves of convergence when calculating

the input impedance Z m, we must check to see that the susceptance

increases with mode number. This is easily done by resorting to large

order asymptotic expansions for cylindrical functions:

3. m - co, From the corresponding large order asymptotic expansion

for Jm and Nm, we find

Lim B i = - 2,r_ ¥ (G-14)m-co m o
O

which happens to give a result identical with the small argument

asymptotic expansion for modes higher than m = o.

G-3



APPENDIX I-H

COMPUTER RESULTS,

HARDWARE CASE
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COMPUTATION OF NORMALIZED

ZERO ORDER CONDUCTANCE
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COMPUTATION OF ZERO-ORDER

NORMALIZED EXTERNAL SUSCEPTANCE
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COMPUTATION OF NORMALIZED

M-ORDER INTERNAL SUSCEPTANCE
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TASK II

DETERMINATION OF INPUT ADMITTANCE AND RADIATION
PATTERNS FOR WAVEGUIDE EXCITED-AXIALLY

SLOTTED CYLINDRICAL ANTENNAS

1. INTRODUCTION

The general purpose of this task is to initiate work on the analysis,

computation, and measurement of the radiation characteristics {input

impedance and radiation patterns) of an axially slotted cylinder when

excited by a waveguide, under both noncoated and coated conditions.

Z. WORK CALLED FOR

In accordance with the general purpose of this task, the following

specific work statement was issued:

The objective of Task II will be the development of analytical expressions

for the input impedance of two types of feed arrangements ; namely, the

butt-feed waveguide and a waveguide shunt slot feed. Specifically, the

following investigations will be pursued.

A. Butt-Feed Waveguide

A first order expression will be derived for the input impedance of a

butt-feed waveguide, opening into a radially inhomogeneous coating, as

shown in Fig. H-1. Using this expression, the admittance and patterns

will be calculated for a particular cylinder and slot size, for no coating,

for a specific homogeneous coating, and finally a homogeneous plasma

r e s onant coating.

Measurements of input admittance and patterns will then be performed

and compared with theory to determine the predominance of higher order

modes. A preliminary investigation will then be undertaken to

II.1
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analytically determine the effects of higher order modes.

B. Shunt Slot Waveguide

Essentially, Task II-1 will be repeated (for a shunt slot waveguide feed);

however, neither patterns, higher order mode effects, nor measure-

ments will be included.

II-3



3. WORK PERFORMED

A. Butt-Feed Waveguide

1. Introduction

The structure to be analyzed consists of a metal rectangular waveguide

whose open end is butted, i.e., made flush with the outer metal wall

of an infinite cylinder as depicted in Fig, II-1. The cylinder is con-

centrically coated with, in general, a radially nonhomogeneous coating,

and the open end of the waveguide forms an exciting axial slot antenna

on the cylinder.

The waveguide is excited by the dominant TE 01 mode, and any point in

its interior is defined by the rectangular coordinates ( _, _7, _) where

= o corresponds to the tangent plane (p = a, 6 = o) at the metal

cylinder wall, where the cylindrical coordinates (P , 6, z) are used to

define any point exterior to the cylinder.

The characteristics to be determined for a specified cylinder size,

-coating condition, and slot dimensions, are the normalized input wave-

guide admittance, Yin' as seen by the TE01 mode at the interface 9 = o,

and the radiation patterns.

The pertinent fields which exist in the waveguide are:

(II-1)

H_(_,17,_) = - _Yol e-J_°l _cos(-_r-)(1-1"eJZflol _)+(h,t.)H (n-z)

II-4



where a time dependence of _¢Ot is understood, and where

0

flO1 =

kgo1 =

X -
V

V -

C --

f =

YOI =

E =
V

F =

(h-t.)E=

(h.t.)H=

arbitrary source constant for the exciting TE 01 mode

Z_/kg01 = phase factor of TE01 mode

kv/_'l- (kv/24_) Z = guide wavelength of TE01 mode

c/f = 2w/_ - = wavelength of exciting source as measured

in unbounded vacuum

propagation factor in unbounded vacuum

speed of light in vacuum (3 " 108 meters/sec)

frequency of exciting TE01 sources (cycles/sec)

kv
( gX-_0101)/77 = characteristic wave admittance of TE 01 mode

!
Uv

characteristic impedance of vacuum =_]
Ev

permeability of vacuum (4_. 10 -7 hys/meter)

permittivity of vacuum (1/36w • 109 farads/meter)

reflection coefficient of TE 01 mode

higher order mode terms, electric fields

higher order mode terms, magnetic fields

Now, the only speci£ied field component is the source constant, _.

The reflection factor F (which is, in general, complex) and the mag-

nitude and phase of the (h.t.) E and (h.t.) H terms are unknown. The

problem is to determine F or the input wave admittance, Yin' of the

TE01 mode which is related to F through the relation

H_(_'_?"°} I (1 - 1_)Y'ln= G.ln+j Bin=- E_?(_'_,oi :Yol (1 + F) " (II-3)

T.E.o, rome,,

II_5



It is convenient to define the normalized input waveguide admittance,

Yin' by

Y,

xn _ 1 - F

Fin Yol gin + j b. = . (II-4)xn I+F

A general method which can be used to determine I" , taking into account

the higher order modes, will be discussed later. However, in order to

more readily comprehend the general method (as well as to insure that

it is really necessary) an initial treatment using the approximation of

neglecting higher order modes (i. e., assuming (h.t.) E = (h.t01i_ I = 0)

here referred to as the first order approximation will be pursued. Further-

more, to appreciate the first order approximation technique for the general

nonhomogeneous or homogeneous coating cases, it is in order to first con-

sider the procedure for the case of no coating.

2. First Order Solution for Admittance--No Coating

2.1 External (Radiation) Admittance

To determine the waveguide input admittance, it is first convenient to

determine the so-called external aperture or radiation admittance,

defined by

2P
y = c = G B (n-5)
c ,,IVo'Z c +j c

where Pc is the complex power flowing through the slot, and IVol

the magnitude of the voltage across the slot, i.e.

is

1
Pc = _" " slot ]Hslot Sslot

slot

(II-6)

II-6



= E W (II-7)Vo o

where E ° is the voltage across the center of the slot (E °

and Re means real part of.

=E'(I +r))
O

The evaluation of the first order approximation to Y follows the tech-
C

nique described by Knop and Swift (Ref. 1). (A reprint of this reference

is attached to this report; it should be noted that this work was done by

NESCO and NASA during the preparation of the proposal for the subject

contract.) This technique consists of finding the transform of the axial

magnetic field, H , across the slot given the circumferential electric
z

field across the slot (and, hence, its transform ]_). Knowing the trans-

forms of these fields, it follows from Eq. II-6, as shown in Ref. 1, that

P can also be expressed as
C

P = a (2_r)2_ S: _ "1_ dh (II-8)
C _ - Z

m--_

This procedure then gives (via (11) of Ref. i) (it is noted mat hu Ref.

k ° is used for fly' #o for gv' andu ° for Uv)

m=+0o

Ycv = 0_va(flv6)Z amlm (II-9)
lq'l" --

where the subscript v has been added to Y
C

(i. e. , no coating condition) and

to denote the vacuum

a
m

(II-10)

II_7



I
m

z z H (Z) C_J1- y dy
= _ 1 - y COS m

= _ Z Z ZLZ 2 (Z)l(C[y-_/_v ] _ 'I_-Y2')
(I1-1 i)

ZBy choosing the proper roots of the quantity l-y ; namely,

22 _' y lyl< I
_l-y =

I j_y2, lyl>i
(II-1Z)

as discussed in Ref. I, it follows that the normalized external or

radiation conductance and susceptance are, respectively,

l

gcv _7 Gcv = N R (2Pcv') k 4 Z
= e _V'_o_ / = Z_r5 P

a m

_' (1+6=) 'mg
m=O

(II-13)

whe re

Img =_0 (,Z 4k m [Z=pk - Iz
(II-14)

with

k = ,_/A.v,.. P= a/L, and 6m = _ 1 m = 0o 0 m¢0 (II-15)

11-8 ["



and

"ZPcv " 1 3rn_ a
= ='_m( m

bcv 77 _¢v [Vo Iz)= Zlr3 pk =0(i+6o )(!lm - I2m)
(II-i6)

where

I:lrn-- (¥Z 4k m

]dy

(II-i7)

,,1 1-v cos (=kv} J (x) J '{Xj+r (X) Y 'iX) dy
" " " " " _- m II1 iIl i-i-1 "

(II-18)

Zwhere X = Z _rpk 1-y and it is to be noted that Z Wpk = Zlra/X v=C.

Z.Z Relation Between External (Radiation) Admittance and Waveguide

Input Admittanc e

It is noted that Yc (i. e., gc and b c) are independent of the physical

manner in which the slot is excited. To relate this external admittance

to the actual measured waveguide input admittance: Yin' the following

IIr9



points are recognized.

At the metallic surface p = a the tangential electric fields on this surface

off the slot are zero, and those on the slot must be continuous. The

radius of the cylinder is assumed large enough so that over the slot the

conditions of Eq_ E and H _ -H_ hold. This assumption implies thatz
the waveguide surface, z = o, coincides with the cylindrical surface D = a,

= o over the entire width of the slot and is, therefore, identically true

only for an infinite cylinder radius. However, it can be anticipated to be

a reasonable approximation for cylinders large with respect to a wave-

length (i.e., C>>l). Continuity of the tangential electric fields at the

surface D --a then give

V O off slot

E_ (a,_,z) = _ (II-19)

E77 (_, 77, o) on slotC

O of f slot

Ez(a'¢'z) =I--- E_(_, _7)_0 on slot

(II-Z0)

where in Eq. II-Z0 the E_ field has been taken as zero over the slot

since this field is entirely composed of higher order modes, which are

assumed to be zero in the first order approximation, i.e.

(h.t.) E = (h.t.)H = 0 (II-21)

From I!-19 and II-20 with Eqs. II-1 and II-2, it follows that the complex

power flow, P , can be expressed in terms of the fields on the inside of
c

the slot as

Pcv i_ ° ]Z ( 1 +_(1)) (1 - F (1)1 Y w,_ (II-22)= v v " ol -X--

II-I0



where the subscript v and the superscript (1) on I" indicates the first

order approximation for r for the no coating case. Now, from the

fields on the outside of the slot Eq. II-5 gives

IV ° j2

Pcv 2 Ycv (II-23)

Since the power flow, P , must be the same on either side of the slot
c

it follows from Eqs. II-22, II-23, and II-7 that

Yin = 2 I-_) Ycv (I1-24)
V

where use has been made of the relation Eq. II-4 with I 1 ÷ F I2

(l+r)(l+

In normalized form Eq. II-24 is

- = + j b. = 2 Ycv (II-25)
Y inv Yo 1 ginv lnv v

iee_s, ,

V V

and

b.ln =2 l_)I_> bcv (II-27)
V V

II,-1 1



Thus, the first order normalized input waveguide conductance and

susceptance are related to the external conductance _nd susceptance,

wrespectively, by the "transformer" ratio Z ( T ) ( ). The
V

internal problem is then solved once the external problem is solved.

Thus, the first order approximations to gin and b.ln are given by

Eqs. 11-26 and ll-Z7 with Eqs. 11-13 and II-Y6. v

Z. 3 Computations of Conductance

The expression Eq. 11-13 for the normalized external (radiation) con-

ductance, gcv' was programmed and computed on an IBM 704 computer.

The programming method is described in Appendix II-A.

W

The dimensionless parameters appearing in this expression are _o = --a-'

p = a/_, and k = 6/k v . The slot dimensions were chosen to correspond

to the internal dimensions of a standard RG 5ZU rectangular waveguide,

i.e. , _ = 0. 900 inch and w= 0. 400 inch. A cylinder diameter of

2a = 13 inches (corresponding to p = 7.Z2 and _ = 3.52 degrees) was
O

chosen since it represents a compromise between a small cylinder (for

which the computations are easier but the assumption of neglecting higher

order modes becomes less valid) and a larger cylinder (for which the

computations are more difficult but the assumptions of neglecting higher

order modes becomes more valid). The cylinder size and slot dimensions

were held fixed at the above values and gcv was computed as a function

of frequency by assigning different values to the parameter k = _,/k v .

The particular value of k = i/Z representing a (free space) half wave-

length resonant slot was computed in the past by Wait (Ref. 2) and serves

as a partial check on the computations performed here. In this connection

it is important to note that in Wait's work, the factor a was taken asm

unity since he considered only very thin slots, and this work gives

gcv I= 0. 384 for the slot considered here.

W air

k=l/Z

a =1
m

II-IZ



In the computations of Eq. II-13, a was first set equal to unity andm

k = l/Z to see if Wait's value would be obtained; the value obtained was

gcv = 0. 383; this is good agreement, indicating that the computations

k=I/Z

performed here are correct. The factor a was then retained in the
m

computation and the result obtained was gcv = 0. 358 indicating that an

k=llZ

error of approximately 7 percent too high is made by setting am = i for

the slot considered here. For this reason a was retained for all the
m

computations ofk = 0.50, 0.60, 0.70, 0.80, 0.85, 0.90, 0.95 and 1.00

corresponding to a range of frequencies for which the slot length varies

from a half of a free space wavelength to exactly one free space wave-

lengthr The results are tabulated below in Table II-i and are plotted in

Fig. II-Z, and are accurate to three significant figures. It is seen that

a sufficient number of values of k were taken so as to obtain a smooth

curve for gcv(k).

TABLE II- 1

Computed Values of gcv

k gcv

0.50

0.60

0.70

0.80

0.85

0.90

0.95

1.00

0. 358

0. 483

0. 609

0. 730

0. 786

0. 839

0. 888

0.933

The number of terms required in the summation of Eq. If-13 to realize

three significant accuracy in gcv varied from Z8 terms for k = 1/Z to

52 terms for k = 1.
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Z.4 Measured and Computed Values of Input Waveguide Admittance

Using Eq. H-Z6, the first order approximation for normalized input

waveguide admittance, gin ' was computed and is shown in Fig. II-3
V

which also shows measured values on a finite cylinder of length L = Z4

inches. Measurements were made using the standard method of

measuring VSWR and minimum point location with a short circuit at

the slot location (p =a) and with the short removed (i. e., the actual

antenna). The measurements and associated data are given in Table

II-Z. The short circuit was realized by pla_ing a small brass plate

curved to "fit" the cylinder surface and held in place by a strap arrange-

ment. To ascertain the effectiveness of the short the VSWR with the

short in place was also measured and was always above 45 db (i. e. ,

VSWR > 175). Photographs of the end view of the noncoated cylinder

showing the waveguide fed axial slot is shown in Fig. II-4-a, and of the

measurement set up in Fig. II-4-b. Fig. II-4-b also shows the poly-

• ethylene dielectric sleeve to be used for the coated case.

An examination of Fig. II-3 shows that the measured and calculated

percent. This accuracy is reasonable enough for practical purposes

and, hence, establishes that the effect of higher order modes on the

input conductance of a butt-fed axially-slotted noncoated cylinder of

large size (C >_ZO) is negligible.

It is perhaps important to point out here that during the measurements

of the admittance it was noted that a negligible change in measured

admittance occurred when a metal object or one's hand was placed on

the outer cylinder wall unless placed very close to the slot (say within

1 1/Z inches about the center of the slot). As such, it can be inferred

that for the uncoated cylinder most of the radiation occurs from the

cylindrical surface immediately about the slot location, the remaining

portion of the cylinder making little contribution. The near fields on

II-15
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the cylinder wall are, therefore, very weak away from the slot location,

for this case of no coating. This situation is markedly changed when

the dielectric coating is in place about the cylinder.
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2.5 Computations of Susceptance

From Eq. II-16 with Eqs. II-17 and II-18 it is seen that the modified

Bessel functions Im(X) and Kin(x} of all orders, m, and of argument x

are involved in the computations of the susceptance. Presently, pro-

grams for these functions are not readily (if at all) available, and as

such the susceptance has not as yet been computed. It may be necessary

to develop internal programs for these functions if an exhaustive search

indicates that available programs do definitely not exist.

3. First Order Solution for Radiation Patterns--No Coating

It is known that the first order solutions for the radiation fields for a

noncoated axially slotted cylinder are (Ref. Z);

E = 0 (n-z8)

E$ (r, 8, %5)= e__-j flv r V P(_) = - H e (r, e, _) 7? (II-Z9)
P

whe re

--V= _ V(z) eJflvZ cosOdm
z/ _/2

= mean voltage across the slot (II-30)

where V(z) = a E6sl(:_ is the slot position voltage and P(6) is defined by

GO

.in

2 rn_ (J omCiS m_ (C _) (II-31)P(¢) = -C- =0 1 + 6 H (2)' sin O
m

":'One notes here that the factor sin (m6o/Z)/(m6 o/2) is taken as unity in
the expression for the radiation patterns, in accordance with common

practice. II-20



Thus, the first order radiation field is entirely polarized in the ¢D

direction.

3. 1 Computation of Radiation Patterns

To determine the relative dependence of the radiation field with respect

to _0 for any specified 8, it is only necessary to compute the factor

P(_0). The programming of this function is discussed in Appendix II-B

and computations were performed for the same axial slotted cylinder

used above, (namely, Za= 13 inches, 4.= 0. 900 inch, w= 0. 400 inch).

Computations of P(_o) were made as a function of _0 with increments

in _0 of _(0=5 ° for o_o<90 ° and A_O=Z ° for 90°_(0<180 ° andwere

done for values of C=Z_ pk(p=7. ZZ, k=_/l v) corresponding to 0.5 <

k< 1.0 with increments in k of Ak= 0.10. This was done for each of

the following values of 8:8=90 °, 60 °, 45 °, 30 °, and 15 ° . The results

P(o)

for each such k and 8 in the form of 20 lOgl0 _ Db. are plotted in

Fig. II-5-1 through 1I-5-30.

An inspection of these patterns reveals that the pattern shape is not

critically dependent on either elevation angle, 8, or on frequency

(i. e., on k), although the patterns do sharpen slightly with increasing

frequency and the radiation level in the rear increases as 8 decreases.

As such, the broadest pattern occurs at the smallest 8 and the lowest

frequency (smallest k). For the range of parameters considered here,

this corresponds to Fig. 11-5-Z6 for which 8= 15 ° and k= 0.50.

Similarly, the narrowest pattern, representing the other extreme,

occurs for the largest 8 and largest frequency (largest k), i.e., Fig.

11-5-5 for which 8= 90 ° and k= 1. All other patterns fall within these

two bounding cases. These two bounding cases are redrawn in Fig.

11-6 for ease of comparisDn; it is noted that each are normalized with

respect to their own on axis (_= o) value, as shown in each figure.
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To determine the dependence on 8 for a given g_, it is necessary to know

both P(cp, 0) and _(e). Integration of Eq. II-30 for the assumed field
wz

= cos (-_.-) givesdistribution of V(z) V °

_(e)

_-kV
0

-"Z-

1T
4

cos (kTrcose) cos e/ 1
(1 - 4k_ cosZe) z-"_ (zI-3Z)

1
cos e : Z"-k (11-33)

A tabulation of the elevation pattern quantity,

Eg)(8)[ = 201og10[P(_/Z)V(_r/Z)/P(e) V(8)[ is given in Table II-3a and

II-3b for the elevation planes _0= o and _p= It, respectively, for values

of k= 0. 70, 0.80, and 0.90 corresponding to operation in the X-band.

Plots of these calculated elevation plane patterns are shown in Fig. 11-7.

D: ZOllOglo_(e)le : =/z /

3.2. Measured and Computed Radiation Patterns

ck
Pattern measurements were made at the frequencies given by f=-_-,

i. e., fKMC= 13. lZk corresponding to the values of k shown and are

shape, only representative samples will be given here to minimize

redundancy as well as for purposes Of economy.

TABLE II-4

FREQUENCIES USED FOR NONCOATED
CYLINDER PA TTERNS

k 0. 70 0.80 0.90

kKM C 9.18 10.50 11.81

Figures 11-8, 11=9, and II=10 show the equatorial plane (8 = ?r/Z, _0

variable) patterns observed as a function of increasing frequency.

corresponding theoretical patterns taken from Fig. 11-5 are

The
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redrawn on these figures for ease of comparison. It is seen that the

agreement between theory and experiment is very good all around the

cylinder, both with respect to the general db level and the number and

location of the lobes.

F£gures H-9 with II-ll and II-I2 show the conical cut patterns (4

variable, @ a parameter) for values of @ = w/Z, w/3, and _/4. Here

again the computed patterns taken from Fig. 11-5 are shown; it is seen

that the agreement is good but decreases somewhat with decreasing @.

For values of @ _< w/4 it was found that ground reflections become too

severe on the pattern range used to yield meaningful patterns.

Figures II-13, If-14, and II-15a show the on-axis (4=0 and 6--w )

elevation plane patterns (@ variable) representative of low and middle

X-band frequencies; again it is seen that the agreement with the com-

puted patterns as taken from Fig. II-7 is quite reasonable.

In all cases the cross polarized (E@) component of electric field was

measured to be at least 30 db down.
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f FIRST ORDER SOLUTION FOR ADMITTANCE-COATING

For the case of a coating, the same procedure as for no coating" is used

to find the admittance. Here the work of Wait (Ref. 3) for the coated

axial slot is used, and for a specified tangential electric field distribution

across the slot the transforms of this field and the established magnetic

field across the slot are found. Parseval's theorem then gives the ex-

ternal (radiation) admittance.

4.1 External (Radiation) Admittance

From the work of Wait the pertinent fields established in region 1

(a <p < b) and region Z (b _ p _ co) of Fig. II-1 are given by(336),

(337), (339), (340)and (34Z), (343), (345), (346)of Wait respectively.

For the sake of brevity, these exl_ressiOns will notbe rewrittenhcre, but

it is noted that the following difference in notation is used:

Wait's Notation Notation of this Report

11 U

O v

k
o flv

Furthermore, it is noted here that in Table I of Wait (p. 178) that the

coefficient b should be multiplied by u, and the coefficient am5 isml

lacking a minus sign.

Here again the tangential electric fields on the cylindrical surface

P = a are assumed to be

_- 0 off slot

$

__ E ° cos on slot

(n-34)

E (a,¢,z)= O
Z

(II-35)
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From Eq. II-34 it follows that the transform of E 6 is

_#m(h,a) _ 1 lr _ .hz .m# -_ a_mVoC°Slh_'>
(2_)_- __ _ E_(a,_,z)e J _ dzd_b....

(II-36)

and from (339) of Wait the transform of H is
z

_zm (h'a) = u2 _m Hm(Z)(ua) +Bm Jm(ua)J (11-37)

From Parseval's theorem the external (radiation) admittance is

m=+¢0

Yc - IVoc]_ = _ m=-_ -_ m(h, a)]_zm(h, a) dh

(II-38)

Using the six tangential boundary conditions (continuity of E6, E z, H6,

Hz at p=b, and continuity of E6 and Ez at p =a) and determinants

gives expressions II-39, II-40, and II-41 for B m, b m andD' m,

respectively, where D m is the determinant formed by the coefficients

amp, etc., in Table I, p. 128 of Wait.
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Substituting these expressions into Eq. II-38 then gives

Y
O

m-+®

a/_a_Z Z j am

_,, kz] m--®

' Iv_-.,(_'(_-u___'(_Q '" (II-42)

/

where:

- [rhh ]Z[. 7 Z_ L_-,_u -Uv_ _L-J'(UvO_j)

Um : ,.Tm(Ua)Hm(Z)_ub) -J'm'(Ub)Hm(Z)(ua) (II-43)

V m : ,Tm(Ua )Hm(Z)(ub) - Jm(Ub) Hm(Z)(ua)

= Jm(Ub) H (Z_ Hm(Z)(ub )Lm m (ua) - Jm'(Ua)

T = $m'(Ub) H (2_(ua) - Jm'(Ua) H (Z)iub)
m m m

(II-44)

(II-45)

(II-46)

As a partial check on Eq, II-42, consideration of the special case of

no coating (b=a) or an air coating (N=I) each cause (II-4Z) to reduce to

Eq. II-9 as should be.

Rationalization and normalization of Eq. II-4Z then gives
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as a partial check on (II-47) the case of no coating (b-a, i.e. W=I) or

an air coating (W=l) both reduce (II-47) to (II-1B) as should be.

It is noted that the above reduction of Yc shows that only the integration

from 0 < y _ I contributes to the conductance {which may be anticipated

if one considers that the conductance can also be obtained using Poynting's

vector and the radiation fields).

However, the expression for b will be of the form
C

= + + (iz-48)bc l

N_ 1

for the general case of an arbitrary homogeneous coating. As yet the

explicit form for the integrands of (II-48) has not been obtained.
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4. Z Admittance for Special Case of Plasma Resonance

For the special case of a plasma coating at plasma resonance (one for

which _p = wand v= o) the refractive index is identically zero, i.e. ,

N = 0. For this condition, it has been shown (Ref. 4) that the equatorial

plane radiation field is independent of 6 and that, therefore, the only

term contributing to the fields in the summation over m is the m=o term.

This must also hold for the near fields and the field over the cylinder since

else no omnidirectionality would be possible. Thus, for N = 0, only

the m = o term need be retained. For this case II-4Z reduces to

Yl
N=0

(I1-49)

This also should follow from direct substitution of N = 0 in (II-4?) and

simplification.

Rationalization and no rmalization then give s

gc [ -

N=0

4 _I 2(cos _ky) dy

o- o (c )l
(II-50)

beI
N=O

= b + b (II-51)
c I c 2

where
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bc 1 2w2C k 2

_co_ky){(,-y2(IHo(2)(X)12_o_ 1_2)ix)l%_o-y_1-y2

(2_ )21 +jy ,12

[Jo(X)_CxI,Yo(Xl_Cx)](VoTo*%Lo}dy
I'

(II-52)

and

O0

bc2 2w2C k2

(_-4-_kl_
r --

(cw'_yz-l)%+y K_(CW_ _-1)L o

(II-53)

I 2
with X = CW '_ 1-y and'_" _o U ° , and L0 _ _ 0

numbers defined by

, are purely real

To - -J _o' _-o - Z_w[ K'(Cy)%'(CWy) - %'(Cy)K'(CWy)] (ii-54)

v=Jv o, v o = _z[%(Cy)K (CWy)- Ko(CY)1° (CWy)
11"

(n-55)

Uo= _2 [Io'(CWy) Ko (Cy) - K'(CWY)o Io (Cy)] (II-56)

L
O

2_ [K' (Cy) I° (CWy) - K (CWy) I' (Cy)]
11" 0 0 0

(II-57)
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Inspection of these expressions reveals that the computation of the

external input admittance is simplified at plasma resonance as com-

pared to the general case of arbitrary refractive index. However, the

expressions are still too complex to be integrated efficiently by other

than computer methods. Programs for the zero order and first order

Bessel, Hankel, and modified Bessel functions exist, and as such the

programming of the expressions for gc I and b c I should present no

special problems. N=0 N=0

4.3 Relation Between External (Radiation) Admittance and

Waveguide Input Admittance

For the first order approximation, that of neglecting higher order

modes and use of Eqs. I[-19 and II-20, the relationship between the

normalized external admittance, Yc' and the normalized input wave-

guide admittance, Yin' of the coated cylinder will be the same as for

the noncoated case, i.e., be given by Eq. II-Z5. As such, once the

external admittance is found the waveguide input admittance is readily

determined.

4_ 4 Computations of Admittance

As is seen from Eq. II-47, the programming and computation of gc

should present no particular problems since programs for all the

functions involved are available.

However, the expression II-48 for b , as also was the case for no
C

coating, involves the functions Ira(x) and Km(X ) for all integral values

of m. Programs for these functions except for order m = 0 and m = 1

are, as yet, apparently not written, and this must be done prior to

programming the expression for b .
C
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4.5 Measurements of Input Wave_uide Admittance-Polyethylene

C oatin_

The cylinder used above for the noncoated condition was coated with a

polyethylene coating (representing, electrically, an ablative coating) of

a quarter-inch thickness, i.e., T = b-a = 0.25 inches, and measure-

ments of input waveguide admittance were made. The dielectric con-

stant of this coating material was first measured over the X-band

frequency range to ascertain the correctness of the published value of

E = Z.25. Four samples were cut out of the polyethylene stock sheetr

and their dielectric constant was measured by both the Von-Hippel

method and by directly measuring the guide wavelength in a slotted line

completely filled with the sample material. The results are tabulated

below.

TABLE II-5

MEASUREMENTS OF DIELECTRIC CONSTANT
OF POLYETHYLENE

Direct Method

fkmc

8.20

9.20

10.20

11.20

{ -Measured-
r

Sample # 1

2.25

2.27

2.25

2.28

Sample #2

2.25

2.27

2.26

2.28

fkm c

10.20

Yon Hippel Method

{ -Measured-
r

Sample #3

Z.24

Sample #4

2.24
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Thus, it is seen that the published value of 2.25 is within approximately
+
- 1%of the measured values, which is within the accuracy of the

measurements; thus, one can justifiably take the dielectric constant
as Z. Z5 within this accuracy.

The polyethylene sleeve was "heat fitted" on the cylinder so as to make

a snug fit, and it is estimated that the accuracy of concentricity of the

outer surface and inner surface of the dielectric coating was within
+-0. 010 inches. The slip fitting of the dielectric sleeve on the metal

cylinder is depicted in the photograph of Fig. II-15a.

The measurements of admittance were made in the conventional manner

as with the condition of no coating. To realize the short circuit con-

dition and to avoid the necessity of removing the dielectric sleeve and

then replacing it at each frequency used, the short was first placed on
the noncoated cylinder at each of the frequencies to be used and the

frequency setting was accurately determined by means of a frequency
meter accurate to within +-2 1/2 MC (Hewlett-Packard Model X532B).
These exact frequencies were then reused with the short removed and

the dielectric sleeve in posit_on.

The measurements made and the associated data for __c and b are
C

shown in Table II-6. Plots of gin and b. are shown in Fig. II-16a andin
II-16b, respectively.

Measurements were then repeated for four different circumferential

positions of the dielectric sleeve at each of several frequencies, as

shown in Table II-7 and Fig. II-16. The dielectric positions were

separated by increments of 90 ° and designated by positions A, B, C,

and D as defined in Table II-7. It is seen from Fig. II-16 that the

resultant admittance differs for each position of the dielectric even

though the frequency was held constant. This can be attributed to one

or both of the following reasons: for each position the "effective

dielectric constant" of the coating differs due to ....L_ approxk-_nately
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FIGURE 11- 15b 

DIELECTRIC SLEEVE FITTING ON METAL CYLINDER 
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1% deviation in the circumferential variation of dielectric constant

which exists; for each position the effective thickness of the dielectric

coating differs due to the inner and outer radial variation of approxi-

mately + 0. 010 inch. In either case, such changes influence the mean

electrical circumferential length of the coating, _, here defined by:

c (w+ I)
=-2 (II-58)

-- a+b,
where a is the mean radius (a = _ and ]_ is the mean refractive

index. It is seen that the change in _ due to changes in _ (i. e., W)

and/or _ is

AC-- = _--C(W+ I) AN+ N'AW (II-59)

which since W_ 1 and AW = AT/a is

A-C = _C 2_'N+N _AT (II-60)

It is recognized that the first term contributing to A-C is the change

in circumferential electrical length due to the change in the refractive

index of the coating whereas the second is due to the change in thick-

ness of the coating. Now, here upper limits of A_ and AT/a are

approximately _l_ma x = ± 0.02 and AT/a = + 0. 004 so that _ C-

(0. 024), AT _ 0. 024C . For the cylinder used at X-band,
max max

Cma x_ 45, therefore, the maximum change in C can be ACmax_l. 0

i. e., the mean circumferential electrical length of the coating can

approach the order of a wavelength in the coating material. Intuitively,

one would expect that such a change could very well lead to k large
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change in input admittance. It is seen that the major contribution to

A_ is from L3_. Thus, for large cylinders (large C's) small changes

in the refractive index may be expected to account for the observed

changes in admittance.

To make meaningful measurements of the input admittance and to com-

pare them with computed results, it follows that stricter tolerances on

the refractive index will be necessary if one uses electrically large

cylinders. These tolerances will be correspondingly reduced (as seen

from Eq. II-60) for smaller cylinders. It would seem then that for an

initial test of theory it may be more appropriate to use smaller cylinders.
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5. FIRST ORDER SOLUTION FOR RADIATION PATTERNS-COATING

From the work of Wait (Ref. B, Eq. (355)) the equatorial plane radiation

fields for the homogeneous coated axially slotted cylinder are given by

Eq. II-29 but with P(#) now given by

4 _ jm÷l cos m _b

P(%b)- wC-Z'WW m=0 [Tm Hrn(Z)(ew) - N L m H (z)'m(CW)]. (Ii+ 6 m) (II-61)

where all the symbols have been previously defined are T and L
m m

are given by Eq. II-43 but with the argument u evaluated at the point of

, = _flv2N 2- h 2. where h = [Iv cos Ostationary phase, i.e. at u ° o ' o

so that at O = _r/2.,u ° = flv N = ft.

5. 1 Computation of Radiation Patterns - Polyethylene C0atin _

Expression II-61 was programmed following the procedure described in

Appendix II-C, and computations of P(_) were made in increments of

A_= 1 ° for N =_-.2.5 = 1.50 and W = b/a = 1.0385 corresponding to

a coating thickness of T = b-a = 0.250 inch for a = 6.50 inches. Com-

putations of P(_) were made at frequencies corresponding to values

of k of: k = _v = 0.50, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90,

0. 925, and 1.00, where _ = slot length = 0.900 inch.

From these computed patterns shown in Figs. II-17-1 to II-17-10 it is

seen that the pattern dependence on frequency is somewhat critical. At

the low frequency end (k = 0.50 and 0.60) the pattern has many lobes

and nulls all around the cylinder, the nulls in the rear being much more

severe than those in the front, but the lobes being about the same level

all around. For increasing frequency (k = 0.65, 0.70, 0.75) the lobes

in the rear are reduced in level and the oscillations in the front become
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less severe. For still higher frequency (k = 0.80, 0.85, 0.90, 0.925)

the radiation in the rear becomes negligible and the pattern approaches

that of the smooth pattern of the noncoated cylinder, with the exception

that with the coating the pattern is narrower (eg. for k = 0.90 the db

level for $ = 90 ° with the coating is I0 db, (Fig. II-17-8), while for no

coating it is 3 db, (Fig. II- 5-5 ) ). For a further increase in frequency

the pattern again tends to oscillate all about the cylinder (k = I. 00).

To examine the effect of a small deviation in dielectric constant from the

value of N = 1.50, computations for N = 1.48 and N = 1.52 were also

made. This was done for the frequency corresponding to k = 0.70. The

resultant patterns are shown in Figs. II-18-1 and II-18-2 along with

II-17-4. It is seenthat for N = 1.48 the patternis essentially the same

as for N = 1.50, but is somewhat broader. However, the pattern for

N : _52 differs somewhat from that for N = 1.50, by having higher

lobes of radiation in the rear and also more severe oscillations in the

forward direction with a null-on axis.

5.2 Measured and Computed Radiation Patterns - Polyethylene Coating

To test the accuracy of the predicted computed patterns, patterns were

measured at values of k corresponding to the X-band frequencies given

in Table II-8.

k

fkmc

TABLE II-8

FREQUENCIES USED FOR COATED CYLINDER PATTERNS

0.65 0.70 0.75 0.80 0.85

t ,

8. 53 9. 18 9. 84 I0.50 II. 15

0.90

11.81

i
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The measured patterns are shown in Fig. II-19-1 to II-19-6 along with

the corresponding computed patterns as taken from Fig. II-17 for ease

of comparison. It is seen that the agreement between theory and experi-

ment in the forward direction is quite satisfactory, but that at the higher

frequencies (k = 0.80, 0.85, 0.90) the radiation level measured in the

rear was considerably higher than that predicted, although for the lower

frequencies (k = 0.65, 0.70, 0.75) agreement in the rear is still satis-

factory. The poor agreement in the rear direction is probably attributed

to the critical dependence of rear pattern shape on frequency for fixed

parameters of N and W (or on the parameters N and W for fixed

frequency).

It is reasonable to expect that for k = 0.80, 0.85, and 0.90 better agree-

ment with experiment could be realized if one made a series of computed

patterns for finer increments of N about the value 1.50 and finer incre-

ments of W about 1. 0385, since the agreement for k = 0.65, 0.70,

and 0.75 is reasonable all around the cylinder, although not as good as

for the case of no coating. This is probably due to the fact that since

the cylinder is so large (large C) that a small change, i.e. , a small

nonhomogeneity in iN can change thc patterns, as is seen from Fig.

II-18, and since this nonhomogeneity in N exists in the circumferential

direction of the actual coating, the resultant pattern will tend to be some

sort of average pattern representing the range of N' s covered. As

such, the measured pattern (which is for a slightly circumferentially

nonhomogeneous coating) will probably never be in exact agreement

with a computed pattern based on a circumferentially homogeneous coating.

Better agreement will probably be realized for cylinders where the NCW

product is smaller.

The measured patterns in the elevation plane (_ = 0, _ = _, e variable)

are shown in Fig. II-20, and various measured conical cuts (0 a para-

meter, _ variable) are shc_vnin Figs, II-21-1 through 21-3, all for k = 0.70.
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5.3 Computations of Patterns Near and at Plasma Resonance

For the case of a plasma resonant coating (N = 0) the pattern factor P(qb),

Eq, II-61 becomes;:" (Ref. 4);

1
P(¢).[ =

[ 1W#l WC 2 (W- _) Ho ('_')(CW) H(2)'(CW)
2 + o C

C<oo

(n-6z)

i.e., is independent of qb, and the pattern is then omnidirectional. Eval-
a

uation of [P(o)] for the case of IV = 1.0385 and C = Z_rpk for p = Z =

7.2Z and k = 6/_ = 0.50 gives [P(o)[ =0. 1939 andfor k = 1.00
V

gives [P(o)] = 0. 1048.

For N small and positive but not exactly zero, computations of Eq.

II-61 were made and the pattern was still observed to be omnidirectional

within the extreme variations (which occur for _p = w ) as shown in

Table II-9.

Patterns were also computed for N = 0.01 for frequencies correspon-

ding to k = 0.50 to k = 1.00, in increments of Ak = 0. i0, and deviated

significantly from omnidirectionality, as is seen from the plots of Fig.

II-ZZ. The corresponding on axis values, [P(o)] are also shown on

It is noted here that in Ref. 4 an error exists; namely, the expres-

sion for Jo(x) and Jo'(x) should read Jo(x)_ 1- xZ/4 and Jo'(x)_

- x/Z, respectively. This causes the term Ho_ )Z (CW) in (9) and (10)

of this reference to be divided by two. However, the resultant numerical

change in the on axis radiation only changes from 9.51 db to 9.25 db

down as compared to the uncoated case for the same slot excitation.
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TABLE II-9

MAXIMUM DEVIATION FROM OMNIDIRECTIONALITY

NEAR PLASMA RESONANCE

N

0.00001

0.00001

0.001

0.001

k

O. 50

O. 50

O. 50

0.90

D (db)
max

-2.22 • 10 -6

-2.27 • 10 -4

-2.25 • 10 -2

-2
-7.20 • i0

these figures and each pattern is normalized with respect to its own on

axis value. From these results it is seen that the radiation is greater

in the rear direction than in the forward. Additionally, it is noted that

N = 0.01 corresponds to a very slight deviation of 0a from 0O , namely

(N = 1 -0_p ) 0¢p//0a _ 0.99995. This criticalness is again due to the

large size of the cylinder and is seenfrom Fig. II-22 to increase with

the cylinder size (the departure from omnidirectionality increases with

frequency, i.e., with k and, therefore, with C). For smaller cylin-

ders a larger deviation in _//0ap from unity can exist prior to departure

from omnidirectionality (Ref. 4).

A similar increase in rate of pattern departure from omnidirectionality

shape with respect to increasing collision frequency can then also be ex-

pected to exist for large values of C .

The level of on axis radiation for each case of Fig. II-22 compared to

the same cylinder when noncoated is given in Table II-10 and is seen to

be attenuated significantly even though the coating is a quarter of an inch

in thickne s s.
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TABLE II-10

ON AXIS LEVEL OF RADIATION FOR PLASMA COATING

OF N = 0.01 RELATIVE TO NONCOATED CASE

k

0.50

0.60

0.70

0.80

O.9O

I. 00

lP (°)[no coatin_

3. 137

3. 138

3. 139

3. 140

3. 140

3. 140

[P(°)IN=O. Ol

O. 1685

O. 1308

O. I012

O. 0782

O. 0612

O. 0506

Db. Down

25.39

27.60

29.83

32.07

34.20

35.86

To compute patterns for the case of finite _ a program for Hankel

functions of complex argument, i.e. H (2) (x + jy) may be used; pre-
' m

sent programs (routine COMBES) for this function, however, are limited

in Lhe range of =_s_._...+= .........¢_r which they. are valid and a double precision

scheme may have to be developed.

An alternative approach is to use the method of Swift (Ref. _) and inte-

grate directly across the coating using numerical techniques. Work on

either method remains to be done, however, to determine the resultant

accuracies.

To compute the patterns for other than the equatorial plane, one has a

choice of using either the work of Wait (Ref. 3) to obtain an explicit

expression for the field at any far field point, or to use the recent work

of Swift (Ref. 6, Eq. (44)) who has generalized the exterior problem to

any number of concentric layers, as will be discussed later.
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B. lnfinite Slot

1. Introduction

Consider the structure of Fig. II-I and let 6 become infinite. The

resulting infinite slot radiating structure has no z dependence and the

problem becomes one in two dimensions (p and 4).

From Eqs. 11-34 and 11-35 the slot is then excited according to

f--

| o off slot

E 4 (a,4) = _ E on slot (11-63)
O

e (a,4) = 0 (11-64)
z

By solving for the transforms of E 4 (a, 4, z) and Hz (a, 4, z) and pro-

ceeding as for the finite slot one can obtain the external (radiation) ad-

mittance and the radiation fields.

2. External (R adiation) Admittance

For this two dimensional case the power flow per unit slot length through

the slot, designated by p , is

4o

P = -2- 4o ]_4{ a, 4) Hz{a, 4) d4 (11-65)

--2-

It follows from the expansions
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m-+oo

H z (a,_) = [ _ e -jm_
zm

ITI--- W

(ii-66)

m-+_

rfl-- _

(n-67)

that p becomes (following the procedure of Appendix A of Ref. 7)

m-÷_

p = Tra _m _zm

m-__

(II-68)

n
where and H are the defined transforms

m zm

E--_rn- 17r S II+(a,+) e ÷ jm+ d+

-w

(II-69)

1
e + jm_

= ] Hz(a, _) d_zm _'_

-W

From Eq. II-63 it follows that

(11-7o)

V ° sin (-_-_)

(zI-71)
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where V = E a.
O o

From Maxwell' s equations and matching of the boundary conditions,

zm is found in terms of E_m Substitution of Hzm and Eq. 11-7 1

into Eq. II-68 then gives the external (radiation) admittance per unit

length, Yc4' for the case of ahomogeneous dielectric coating of refrac-

tive index N as

m=+o0

_ Zp = 1 Z N S (II-7 Z)

Yc4 IVolZ -J _?(Zwa) m=-c_am m

where

N Hm(Z)'(CW)[Hm (Z)(NCW) Jm (NC) - Jm(NCW)Hm (z)(NC)]

S - m '(m -N H (Z) CW) [Jm(NCW) H(Z)'(NC) - 5r_(NC) Hm(NCW)] ]

+ Hm(Z)(CW)[ Hm (Z)(NC) Jm (NCw) - Hm(Z)'(NCW) Jm (NC)]

! + Hm(Z)(CW)[ Hm(Z)'(NC) Jm (NCW) - Hm(Z)iNCW) Jm (NC)]

(1m-73)

where the two square bracketed terms in the denominator multiplying

-NH (Z)'(CW) and H (2)(CW) are recognized as L and T of
m m m m

Eq. II-43 with u = ft.

Z. 1 Special Case of No Coatin_

The above is for the general case of N. For the special case of no

coating (N= 1 and/or b = a) Eq. 11-73 reduces and gives the normalized

external (radiation) admittance per unit slot length for no coating, Ycv'

as
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Y cv,C = Yv_ rl "

a r_ ' (7i

".'a _n C)m=O (1+6 ) I-t.tn(2-')'(

(]i-v4)

It is convenient to consider the dimensionless quantity Yc 4,
f

normalized admittance for per wavelength along the slit)

2 _, a H (2)(C)Ycv&Xv = Ycv&lTXv = -J -C- m m
(Z)'

m=0 (1+67) H m (C)
- gcv£ Iv+j bc v4(kv

([t-75)

2.2 Special Case of Plasma Resonance

For the case of plasma resonance one can use the small argument

approximation for the Bessel and Hankel function in E_ I. II-72 as was

done in Ref. _ (note footnote on page of this report) to obtain the nor-

malized input admittance for this case, _1_, v, __

= =-J
CW I 4 ,J

(II-76)

2.3 Computations

Computations for the radiation admittance for both the noncoated, Eq.

II- 75, and the plasma resonant coated, Ee 1. II-76, cases were performed

for two different cylinders over the X-band,-as given in Table II-11.
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TABLE II-ii

CYLINDERS -- INFINITE SLIT

Slot

Width

A 0. 400 in.

B 0. 400 in.

2a

I0.0 cm.

13.0in.

W : b/a

I.00, i.I0, i.20, i.30, I.40, I, 50

1.03, 1.035, 1.0385, 1.04

¢_0

R adians

O. 2032

0.0614

The frequencies considered ranged from approximately 6.5 to 13 KMC,

giving C values ranging from approximately 8 to 13 for Cylinder A and

from approximately 22 to 45 for Cylinder B.

Computation of the input admittance for both the no coating case and the

plasma resonant case were made using Eqs. II-75 and II-76 respectively.

The programming of these expressions is described in Appendix II-D.

The resultant computations are tabulated in Tables II-12 and II-13 and

are plotted in _z":-_S $ .... YT_P%, II-24. and II-25.

Figure II-23, for the uncoated cylinder, also gives plots of external

conductance and susceptance for a slot of the same width excited with

the same frequency (i.e., the same w/),v} but cut in in inflniteplane,

and is taken from the work of Harrington (Ref. 7, Fig. 4-22). It is seen

from Fig. II-23 that as the cylinder size increases, the results approach

those for the plane. (The seemingly closer agreement in susceptance

between plane and cylinder for the smaller cylinder, contrary to what

one would expect, is attributed to the inaccuracies involved in reading

Harrington' s Fig. 4-22.) In any case, the difference between the plane

and cylinder results is within several percent for the large cylinders

considered (C > 8).

From these figures and from Fig. II-Z3 /..._.._w_,1,._.a-n]_ar=..... for the case of
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TABLE II- lZ A

TABULATIONS OF INPUT ADMITTANCE FOR
INFINITE SLOT ON UNCOATED CYLINDER

b " kv gcv_ " kv H bcv_W/kv gcw " kv cW

8,377 0.271 2.679 1.879 Z. 80

8.900 0.288 2.642 1.746 2.75
9.424 0.305 2.603 1.622 2.70

9.947 0.3ZZ 2.562 1.506 Z.65
10,471 0.339 Z.5Z0 1.396 Z.60

10.995 0,356 2,476 1.294 Z.55
11,518 0.373 2,431 1.198 Z.50

12.042 0.390 2,384 1.108 2.45

12.565 0.406 Z.337 1.023 Z.40

13,089 0.423 2,289 0.944 Z.35

1,80

1.70
1.65

1.50

1.45

I.Z5

1.15

1.05

1.00

O. 9O

TABLE II-12 B

C

Z_ pk w/k _ • k b • k gcvFv gcv_ v cv£ v
°k

vH
b
cvQ

22.682 0. ZZ2 2.860 2.219

24.951 0.244 2.814 2.037

Z7. Zl9 0.267 2.766 1.859

29.487 0.289 2.715 1.698
31.755 0.311 2.658 1.543

34.024 0.333 2.599 1.398

36.292 0.356 2.539 I.Z63

38.560 0.378 2.477 1.138

40.828 0.400 2.412 1.0Zl

43.096 0.422 2.346 0.912

45.365 0.444 2.280 0.812

Z.90

2.85

2.80

Z.75

Z. 70

Z.65

Z.60
2.55

2.45
2.40

Z.35

Z. 30

Z. 10

1.90

1.75

1.60

1.45

i. 3O

1.15

1.05

O.9O

0,80

H indicates Harrington values for the plane

A: Cylinder for slit of ¢o = 0. 203Z radians

B: Cylinder for slit of_)° 0.0614 radians

Case A applicable to case of Za = 10.0 cm
w = 0. 400 inches

Case B applicable to case of Za = 13.0 inches
w = 0. 400 inches
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TABLE II- 13 -A
TABULATION OF NORMALIZED ADMITTANCE OF INFINITE SLOT ON

PLASMA RESONANT COATED CYLINDER

8.3767

8.9003
9.4239

9.9474

1.000

•1187

.1119

.1056

.1000

1.100

.0697

.0624

.0559

.0502

I.200

.0310

.0267

.0231

.0200

i. 300

.0159

.0136

.0115

.0099

1.400

.0094

.0079

.0068

.0058

1.5oo

•0062

.0051

•0043

.0037

I0. 4709

I0. 9945

11.5180

12,0416

12.5651

13.0887

.0952

,0906

.0865

.0828

.0794

,0763

.0454

.0411

.0372

.0338

.0307

.0281

.0176

.0154

.0136

.0121

.0108

.0096

.0O86

•O075

.OO65

.OO59

.0051

•0045

.0052 .0032

.0044 .0033

.0038 .0025

.0033 •0019

.0030 .0019

.0026 .0017

I.000 1. I00 1. 200 1. 300 1. 400 I. 500

8. 3767

8.9003

9.4239

9. 9474

i0. 4709

I0. 9945
11.5180

12.0416

12. 5651

13.0881

.0071

.0063

.OO56

•0050

.OO45

.0042

.0038

.0034

.0031

.0029

-•0520

-.0497

-.0475

-•0454

-.0433

-.0413

-•0394

_,0375

-•0357

-•0340

-.0461

-.0422
-.0388

-•0357

-.0330

-.0305

-.0291

-.0263

-.0244

-.0228

-•0348

-.0314

-•0285

-•0259
-.0236

-.0217

-.0207

-•0184

-.0169

-•0158

-.0267

-.0240

-.0217

-.0195
-.0177
-.0162

-.0155

-.0137

-.0126
-.0116

-.0213

-•0190

-.0171

-•0154

-•0139

-•0127

-.0121

-.0107

-.098

-.0091

w

Cylinder A: do -_ - 0.2032 radians

Applicable to the case of: 2a = I0.0 ca.
w = 0. 400 inches
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W = 1), it is seen that as the plasma thickness decreases (i.e. , as W

approaches unity) the susceptance goes from negative values and passes

through zero at some particular plasma thickness (not shown in the above

plots) always being positive at W = 1.

For:a given C and N = 0, this particular thickness can be determined

by further computations.

Conversely, for a given C, and 4o the thickness (i. e. W) for which

N = 0 can be found, and this can possibly be used for diagnostic purposes.

3. Radiation Patterns

It has previously been shown that either without (Ref. 8) or with (Ref. 9)

a coating the radiation pattern for the infinite slot is the same as that

of the equatorial plane radiation pattern for the finite slot. The actual

fields for each case differ by the constant G, i.e. ,

TInfinite Slot TFinite SlotI

where (Ref. 9)

G = e (II-78)
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C. Shunt Slot Waveguide Feed

For smaller cylinders for which a butt'-feed waveguide is not practical,

it is convenient to use the shunt slot waveguide feed, as depicted in Fig.

II-26. Here a slot is cut into the narrow wall of a rectangular wave-

guide. Such a slot provides a shunting admittance, Ys ' across the

equivalent transmission line of the waveguide at the axial position cor-

responding to the center location of the slot (Refs. 10 through 12), as

shown in Fig. II-Z6.

At an arbitrary distance, L D , down the guide, the guide is shown ter-

minated by a matched load, i.e. , a load having a wave admittance Y01 "

The waveguide can also be terminated by a short circuit and L D adjusted

to be an odd integral number of quarter wavelengths. The admittance

presented to the guide at the location of the slot is then YS ' If wide

band operation is desired, a matched termination should be used, at the

expense of loss of usable power in the matched load. For single frequency

operation, the short circuited load is preferred since all the power avail-

able can then be used for radiation and additionally, the length L D can

be adjusted to cancel out the susceptance at the slot location.

Now, the slot admittance YS = GS + j BS is uniquely related to the exter-

nal (radiation) slot admittance, Yc _ = G c + j B c The functional relation-

ship for the general case is discussed in Appendix II-E. For the particular

case of a thin resonant half wavelength slot (_, = A v / 2 ) the slot conduc-

tance, G S , (the real part of YS) has been shown to be related to the

external slot conductance, G C, by(Ref. 2, pp. 321-322)

(II-79)
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and the slot susceptance vanishes,
where x

o

Yo

G C

BS=0,

= inner dimension of broadface of waveguide

= inner dimension of narrow face of waveguide,

is in millirnhos.

and

This relationship has been obtained (Ref. 2) for an uncoated cylinder by

directly extending the work of A. F. Steverson(Ref. 13) who considered

the case of the same slot but in an infinite flat metal plane, in which case

the factor 1.03/G C inEq. II-57 is replaced by unity. Thus, to deter-

mine G S one need only determine G C and use Eq. II-79. The basis

of obtaining Eq. II-79 is given in Appendix II-E.

For the general case of a dielectric coating, the slot may not be resonant

at _ =_v/2 , i.e. , the susceptance introduced in the line, B S , may not

be zero, if so the expression for G S will not be inversely proportional

to G , as discussed in Appendix II-E.
C

For the specific case of a half-wavelength slot with no coating, G isc

given byEq. II-13. Restricting interest to a very thin slot so that the

factor a _ 1 , G is then given by Fig. 11 of Wait (Ref. Z) as a function
m c

of C For C >20 it is seen from this figure that 1 0Z <_ G <_ 1.03
• " C

rnillimhos. Taking the factor 1.03/G as unity with small error, andc

determining_ gs = Gs/Y01 via Eq. II-79 over the X-band range of 1. 18

< < 1.66 where the slot length _, is made resonant at each
gkv

frequency considered, (i.e. _ =_v/Z) gives the results of Fig. II-27

• . = 0) which represents a per-indicating that 0 32 < gs < 2 67 (with b s

fect match (VSWR = 1) near the center of the band ( _gol/k v near 1. 35).

Hence, excitation of a thin resonant slot by cutting it in the narrow wall

of a waveguide in the manner described represents an efficient means

of excitation.

For the general coating case the relationship between the external
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(radiation) admittance and the waveguide admittance can be obtained by

extending the above method, as discussed in Appendix II-E.
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Dr Nonhomogeneous Coating

Thus far only a single concentric homogeneous coating or no coating

ha_s.been considered. For multilayered concentric homogeneous

coatings the same technique can be used as for a single coating. For

each coating four additional unknowns are introduced; two for the

electric Hertz potential and two for the magnetic Hertz potential, each

of the two for both potentials corresponding to an incident and a reflected

component. From these potentials all the field components can be

obtained by appropriate differentiation. Matching of the four tangential

components of E_, H_, Hz, and _z at the outer boundary of each layer

gives the four additional conditions requLred to find these four unknowns.

Thus, in principle the problem is straightforward. However, when the

number of layers becomes large {even greater thanZ) the associated

equa_ons to solve for the pertinent transform coefficients becomes

extremely tedious to handle intelligently (Ref. 9). For this reason

this problem has been appropriately treated by Swift (Ref. 6) using

matrix methods. Essentially, the problem is formulated so that the

transforms of the four tangential fields Ez, E_, Hz and H_ at the

apertur, e are expressed directly in terms of thc far _eld tzansforms

through computable products of four by four matrices, regardless of

the number of layers considered.

Specifically, if the fields in the outermost (i. e., air or vacuum) region

are expressed as (342) through (347) of Wait (Ref. 3), then the trans-....

form coefficients Cm(h ) and drfl(h ) are related to the transform of the

aperture fields by (25) of Swift (Ref. 6) as

_Zm( a, h)

'l_bm{a, h)

l_zm( a, h)

_zm( a, h)

-[LjR h)]

II- 129
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(it is noted that here h is used for Swift's k and the subscripts on the
Z

transforms are reversed) where the matrix [Ljk (m,h)] is given by

the product of matrices given in (23) of Swift. These will not be re-

written out here for the sake of economy. The transforms of Eq. II-80

are defined as in Eq. II-36.

Equation II-80 which is really four equations, contains all one needs to

solve for the external fields produced by a specified tangential electrical

distribution. Additionally, it contains all one needs to solve for the

external (radiation) admittance. This is seen as follows: First, with

Ez(a,_,z) and E_(a,$,z) specified their transforms are found and sub-

stituted in the first and fourth equations of Eq. II-80 to solve for Cm(h)

and dm(h). The transform coefficients Cm(h) and din(h) are then used

to obtain the fields in the outermost region via (34Z) through {347) of

Wait (Ref. 3). In the radiation zone these inverse transform operations

(i.e, , the integration over h) are performed using the method of

1 i. e , the radiation fields
stationary phase to give the fields of order _-, .

Using the second and third equations of Eq. 11-80 to then determine the

transforms of the magnetic field at the cylindrical surface p = a gives,

in conjunction with Parseval's theorem an expression for the external

(radiation) admittance.

Suppose, for specificness, the example of a thin axial slot is considered.

Then Ezm(a,h) = 0 and E_m(h) is given by Eq. I1-36. Use of the first

and fourth equations of Eq. II-80 then give Cm(h) and din(h). In the

radiation zone the stationary phase method is used to obtain the radiation

fields. The power pattern factor is then given by (3Z) of Swift (Ref. 6)

(it is noted that this is not the same as the field pattern factor P(_,@)

Q Z
used in this report, the two being related by IP(_,th[s = P (_,_)_wift)-report

To obtain the external admittance2Yc, use is made of the third equation

of Eq. II-80 to find l_zm(h,a ). Parseval's theorem Eq. II-38 then
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gives Y Alternatively, the external conductance can be found from
c -" 1

Poynting's vector, S = _ Re ( _x ]H ), where ]E and _I are the

radiation fields, as

2 S. D$

G = (II-81)

c ivo[Z

where the integration is performed over a sphere of large radius centered

at the origin. For the axial slot case _ is given by (31) of Swift (Ref. 6).

Use of Eq. II-81 and the real part of Eq. II-38 should give identical

expressions for Gc, and this can serve as a check for any particular

problem. Thus, the case of an arbitrary number of layers can be

treated by the matrix method of Swift to obtain both the radiation fields

and the external admittance, via his result Eq. II-80. Numerical com-

puter problems do, however, exist {Ref. 6).

This method can then be used for a continuous varying radial nonhomo-
v

geneous refractive index, N(p ), by breaking this coating into a series

of concentric tandem layers and associating with the i th layer of thick-

v N(pi) + N(p i + ^""'II Theness A. a refractive index of N. - Z "
1 v

number of layers to be used for a given N( p ) variation is probably best

decided by a series of successive computations corresponding to an

increase in the number of layers. A good starting point may be to

assign each layer with a certain attenuation and phase shift based on

plane wave theory (say for eg. 0.30 db/layer and 10°/layer, respectively).

It also should be noted that the number of layers required for the

radiation field computations will be less than that for the admittance

computations, since the admittance is more critically dependent on the

coating region (i. e. , the near fields) than is the radiation field.

E. General Treatment of Input Admittance--Hi_her Order Modes

Thus far, the assumption that the higher order modes existing in the
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waveguide are negligible has been made. This assumption for the case

of a butt waveguide in a noncoated conducting plane has been shown

(Ref.14) to give results for the conductance which are in good agree-
ment with experiment. The same holds true for a large cylinder as

was revealed by the measurements and computations of Fig. II-3. The

susceptance has been determined by neglecting higher order modes for

the case of a butt waveguide in a noncoated plane by Cohen, et. al.

(Ref. 15) using, essentially, the conservation of complex power method

equivalent to that described above and the results are shown in Fig. 8-Z9,

p. 430 of Harrington (Ref. 7). However, no experimental comparison

is given.

It seems, intuitively, that even though the higher order modes have a

negligible influence on the conductance, they should have an influence

on the susceptance since the higher order modes are all below cutoff

and hence represent pure reactive energy. Furthermore, the presence

of a dielectric coating of _r > 1 may perhaps tend to concentrate the

fields in the vicinity of the slot, so that the higher order modes may

become more significant. To ascertain the influence of higher order

modes, the input admittance should first be determined neglecting them

and then comparin_ these results with experiment. Only if such a com-

parison reveals that the susceptance is not predicted sufficiently

accurately by this assumption, then an analysis based on retaining

higher order mode terms is in order.

Such an analysis could proceed as follows. (Attention is first given

here to the noncoated case and the butt-waveguide feed.) First, the

tangential electric field in the slot can be taken as Eqs. 11-34 and 11-35

which gives rise to an input admittance given by Eqs. 11-13 and 11-16.

Next, using the obtained expressions for Hp (a,_,z) and ED (a,d,z)

exterior to the cylinder via Wait (Ref. 3) p. 127 equations (347) and

(344) respectively, and those for E_ ( _, 77,o) and H_ ( _, _,o)

inside the waveguide the continuity requirement on these fields in
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conjunction with the orthogonality of the waveguide fields over the slot

will give any of the higher order mode coefficients contained in the

terms (ht) E and (ht) H for the waveguide slot fields as given by Eqs. II-!

and I/-2. This will then give the second order approximation to the

higher order mode fields (the first being that (ht)E = (ht) H = 0). At this

point, an examination of the relative magnitudes of the higher order

modes should be made. It is anticipated that due to the symmetry of

the dominant TE 01 mode and the fact that maximum electric field occurs

in the center of the slot, that the most predominant higher order mode

will be the TE03 mode. If so, it alone can be taken, in conjunction with

the TE01 mode, as the second approximation to E_(a,_,z) (as given by

Eq. II-I9 but now with (h-t.) E = (h.t.)TE03 and with F written as I "(2)V v '

which is to be found as the second approximation to I'v). Going through

the process of determining the Fourier mode coefficients for the fields

exterior to the cylinder and equating complex power on each side of
(2) = (1 - I" ""_2))/(1 +F ""_2))the slot will again give an expression for Yin v v "

This quantity could then be compared with experiment to see if indeed

the susceptance as predicted agrees more closely with experiment. If

not, the process can be repeated taking into az.count the next most

significant higher order mode. The same procedure can also bc used

with more difficulty for the coated case. A rigorous formulation of

this process would require a demonstration that the successive approxi-

mations to Yin cause it to approach a limiting value, i.e., that the

process converges. Alternatively, it may be possible to cast the ex-

pression for (1 - F)/(1 + F) in a variational form to show that it is

stationary with respect to small variations of the exciting electric field
4,

about its true value, and to directly obtain the higher mode coefficients

from this knowledge.

The above discussion is, of necessity, qualitative, since the best

method to be used to determine the effect of higher order modes should

be determined by further investigation. However, the method of

successive appro._-_imations has been used to determine the input
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admittance of a coaxial aperture (Ref. 15). (It has only been carried

out, however, for the first order approximation, and does not give a

rigorous demonstration of convergence.) Additionally, a variational

technique has been outlined for the case of a rectangular waveguide in

a noncoated plane (Ref. 16). (It is suspected, however, that this work

is not exact since it assumes that the tangential component of electric

field which is parallel to the long dimension of the slot is identically

zero. )
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4. CONCLUSIONS AND RECOMMENDATIONS OF TASK II

Ao Specific Conclusions and Recommendations

From the work performed, the following specific conclusions can be

made:

1. The external (radiation) admittance, YCV' of an axial slot in a non-

coated cylinder is given by Eq, II-9. This is related to the first order

approximation of the input waveguide admittance of a butt-feed wave-

_ide by Eq. II-24.

2. Computations of the normalized external (radiation) conductance,

gc'- are given, in Table II-1 and are plotted in Fig. II-2 for a cylinder

of electrical size 22_C _46.

3._ Measurements of the normalized input waveguide admittance of

a butt:feed waveguide-axial slotted noncoated cylinder were performed

for a cylinder of size corresponding to 2Z _ C _46 (13-inch diameter

cylinder over the X-band range) and are given in Table II-2.

4, A comparison of the measured and the first order computed

values of conductance is given in Fig. II-3, and reveals that they

differ by at most 5 percent. This indicates that higher order modes

have a small effect on the conductance for the case of no coating.

5. Computations of the butt-feed waveguide input susceptance using

Eq. II-16 with Eq. H-27 remains to be completed since they involve

the modified Bessel functions Im(X) and Km(X) for which programs

are not (apparently) currently available.

6. Computations of the first order approximation radiation patterns

for the noncoated cylinder above were performed over the X-band
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range and are given in Figs. II-5 through II-7. Figure II-_ gives the

extremes in patterns at the'high and lov4 freque_cie_ of

X-band. Figure II-7 gives typical elevation plane patterns. Measure-

ments were made throughout most of the X-band range and compared

with theory; the results are given in Figs. II-8 through II-15_and are

in very good agreement.

7. The external (radiation admittance, Yc' of an axial slot in a

cylinder with a homogeneous coating is given by Eq. II-42. This is

related to the first order approximation of the input waveguide admittance

of a butt feed waveguide by Eq. II-24. From Eq. II-4Z the normalized

external (radiation) conductance, gc' is given by Eq. II-47, and the

normalized external (susceptance) b is given by Eq. II-48 Pro-
' C' •

gramming of gc should not be difficult since all subroutines are available.

Programming of bc, however, requires programs for Ira(x) and I<m(X)

which are not (apparently) currently available.

V

8. For the special case of a plasma resonant coating (N = 0) gc and

bc are given by Eq. II-50 and Eq. II-5 1 respectively, and should be

able to be readily programmed since the only modified Bessel functions

which occur have orders of zero and unity for which programs are

available.

9. Measurements of the input admittance for a I/4-inch thick poly-

ethylene coating on a 13-inch diameter cylinder over the X-band range
v

(corresponding to N = 1.50, 22<_C <46 and W = 1.0385) were made

and found to be critically dependent on frequency and circumferential

position of the polyethylene sleeve. The measurements are given in

Table II-6 and Fig. If-16.

I0. Computations of the equatorial plane radiation patterns of the

above polyethylene coated cylinder were made over X-band and are

given in Figs. II-17 and Ill':"_. The relative critical dependence on
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frequency and refractive index is seen from these computed patterns.

11. Pattern measurements were made of the polyethylene coated

cylinder and are given in Figs. II-19, II-20, and II-21. The measured

patterns shown in Figure II-19 in the equatorial plane agreed reasonably

well with the computed patterns throughout the entire X-band range in

the forward direction of the slot Co _ _ _< 180 °) but differed at the higher

frequency end in the rear direction (180°<_ _ _ 360c_. This latter dis-

agreement is attributed to the critical dependence of the rear pattern

shape to a small deviation in either refractive index and coating thick-

ness (predominantly the former) from their assumed values due to the

large electrical size (22 _<C _40) of the cylinder.

12. Pattern computations in the equatorial plane for the above cylinder

but wi_h a 1/4-inch coating near plasma resonance (N_ 0) were made
V v

and given in Fig. II-22. A slight deviation of N from N = 0(eg. N=0.01)

causes the pattern shape to depart severely from that of a circle.

Additionally, severe attenuation for such a coating as compared to the

no coating case occurs, as given in Table II-10. This is due to the

i_rge electrical size of the cylinder.

13. The external (radiation) admittance for the case of an infinite slot

on a cylinder coated with a plasma resonant iN -0) coating and no

coating was determined and are given by Eq. II-76 and Eq. II-75,

respectively. Computations for both a 13-inch diameter and a 10-cm

diameter cylinder with a slot width of 0. 400 inch were made over the

X-band range (corresponding to a range of 8< C _<45) within a range of

plasma thickness corresponding to 1.0_ W_ 1.5. The results are plotted

in F_gs. II-23 through II-25. The results for the noncoated case are com-

pared with those for an infinite slot in a plane and are within a few per-

cent. The effect of the resonant coatings considered is to reduce the

conductance and susceptance, the latter actually passing through zero

and being negative (i. e., inductive) for some range of plasma thickness.
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This result, the vanishing of the susceptance at plasma resonance for

a known plasma thickness in conjunction with the omnidirectional equa-

torial plane pattern at plasma resonance are suggested for use as

plasma diagnostic tools.

14. The case of a shunt slot waveguide feed consisting of a thin slot

cut in the narrow wall of a waveguide which is flush within the axis of

the cylinder as depicted in Fig. II-Z6 was considered with regard to

the admittance, Y , presented to the equivalent transmission line ofs

the waveguide at the slot location. The work of Wait (Ref. Z) based on

that of Stevenson (Ref. 13) which relates Y to the external radiation,
s

admittance, Y was examined, and computations for the no coating casec

are given for a resonant axial slot in a 13-inch diameter cylinder over

the X-band range (ZZ_ C_ 46). The results indicate that at nearly the

middle of X-band a perfect match is possible.

An extension of the work of Stevenson to that of the coated cylinder is

discussed in Appendix II-E.

15. The case of an arbitrary radially nonhomogeneous refractive
V

index coating (i.e., N(p) ) is considered, and it is shown that using

the work of Swift (Ref. 6) for an arbitrary number of concentric tan-

dem dielectric layers (employing a concise matrix formulation) that

both the external (radiation) admittance and the radiation patterns can

be determined by approximating the nonhomogeneous coating by layers.

The basis of this is Eq. II-80, taken from Swift. Thus, the solution

for the nonhomogeneous coating can be readily determined assuming

all computational difficulties which may occur can be overcome.

B, General Conclusions and Recommendations

From the preceding specific conclusions, it is seen that the radiation

fields produced by as well as the external (radiation} admittance of a
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slot with a specified tangential electric field distribution, cut in an

infinite cylinder and coated with a nonhomogeneous coating can be

determined by breaking up the nonhomogeneous coating into layers

and using the work of Swift (Refo 6)° Furthermore, using the methods

discussed for either a butt-feed waveguide or a shunt slot waveguide

feed, the admittance as seen by the waveguide can be related to this

external admittance, and can be readily determined from it.

The above also holds true for the special cases of no coating, a homo-

geneous single layer coating, and a plasma resonant coating.
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A Note on the Radiation Conductance of an
Axicd Slot on a Cylinder

I Charles M. Knop I and Calvin T. Swift
2

(Received October 19, 1964)

I An expression is derived for the external radiation conductance of an axial slot on a cylinder
using

Parseval's theorem in mode space. The result is then applied to the specific ease of a thin half-wave-
length axial slot and agrees identically with that obtained by J. R. Wait, using an integration of Poyn-
ring's vector over physical space in the radiation zone. A brief discussion of the two methods is then

given.

Consider an axial slot of length I and width w = ad)0 cut in an infinitely long, perfectly conduct-

ing cylinder as depicted in figure 1. From the work of Wait [t959], it follows that if the electric

fields over the cylinder surface p = a are specified as

{0 (_f) off slot7rz
Ec_(a, dp, z) = Eo cos , on slot (1)

Eja, _b, z)= 0 (2)

then the fields produced at any point (p, _b, z) for p/> a are given by eqs (342) through (347) of Wait

[I959] with c= =0 and with d., given by

m

E_
d,,, =jto/xouoHm(_),(uoa ) (3)

J

ARBITRARY POINT
E XTERIOR TO

CYLINDER

'_Plp,@,z)

- It

,,
f

I
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= NASA, Langley Research Center, Langley Station, Hampton, Va.

FICURE 1. 4xial slot on a cylinder.
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with all symbols defined in Wait and where E_ is the cylindrical Fourier transform of (1) defined by

-E_m(h) _-E*=(2_ f f f__ E*(a' cb'z)eShZeS"_dzdcb__ (4)

which becomes

co t )s n,m00,2,
Eel-- 2_r l(h2--Tr2/l 2) (m(b0/2) (5)

m

It is noted that Ee_m(h) is written for brevity as E, and is a function of m and h. The axial

magnetic field produced on the cylindrical surface p = a by the specified electric fields (1) and (2)

is then, from (345) of Wait [1959].

H,(a, 4), z)= F (H,)= _ f _ _l,e-J _"dhe-, _*
m=-_ -

(6)

where Hzm(h), written for brevity as Hz(h), is given by

Hzm(h)_H_= uoH(_)(uoa)
jwlxoH_)'(uoa)

E-_,. (7)

Since the z component of electric field is assumed to be zero over the slot, the real power which

flows through the slot into the exterior is given by

1
P = _ f f Re (E_H_)ad(bdz

slot

where Re means real part of and * is a conjugate operator.

G, is defined by [Wait, 1955]

(8)

The external radiation conductance,

G = 2P/_ (9)

where V0= Eow is the applied voltage across the center of the slot.

To evaluate P by means of (8) requires that Hz first be obtained via (6) and then the integration

of (8) over the slot be performed. Thus, a double operation (i.e., (6) and (8)) is required. Rather

than perform this extra labor use is made of Parseval's theorem, which states that P can also be

expressed as an integration of the cylindrical Fourier transforms of the pertinent fields over mode

space, as

P=_ (2_')2a Re zdh . (10)
m o¢

This is nothing more than an extension of Parseval's theorem in rectangular Fourier transforms

[Harrington, 1961] to cylindrical Fourier transforms, and is derived in appendix A.

Using (7) and the conjugate of (5) with (10) in (9) then gives

•_ sin 21 --Jm_=__ 2 I,,, (11)
G=totxoa(kol)2 Re (____2)
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| with

® _y_ cos _ (-_) H_[C V'_-y _ ]ely

" =f-o L_- w2/(kol)Z]2H_'[C V_ -- y21 (12)

where y=hl/kol is the dimensionless dummy variable of integration and C=koa is the circumference

of the cylinder in free space wavelengths. It must now be noted that (12) cannot be meaningfully

integrated prior to specifying the proper roots of the quantity lX/T-_--y2. These roots are chosen in

accordance with the physical consideration that e-JuoP (which represents the asymptotic wave be-

havior of the Hankel functions appearing in the integrand of (12) must represent outward going,

bounded waves. Hence, uo=+V_2-h 2 for Ih[ < ko and Uo=--j_ for Ihl> ko. Accord-

ingly, the roots

_ _-J+V_-Y _ ly[<l

[-J _ lyl > 1 (13)

must be chosen.

This recognition in conjunction with the identities

J=(-jx) =i TM (--1)=I= (x)

Y=(--jx) =l_' [--2 K. (x) --j (--1)" l= (x) ] (14)

giving

Hm ¢z_(-jx) =j_" K,,, (x)

|

P

9

H= _2)' (--jx) =--_t/TM K" (x)

shows that only the integration over y in the interval -- 1 to 1 contributes to G.

skian relation Jm(x)Y_(x)- Ym(x)J'(x)= 2[_rx then gives

(15)

Use of the Wron-

cos2 (-_ y) dy

G= C2w V_-o (k°/,z_L_---®2g°_% [sin: (--_)](___) f_, [Y_-_rz/(k°l'2]2[Hm(2)'[C1VT_-_] Iz (16)

Expression (16) is valid for any size axial slot provided it is thin enough so that the tangential

electric fields across it are indeed given by (1) and (2).

sin(--_---°)/_--°) )

(
If one now considers the special case of a very thin \ 7-7X- -_ 1 resonant half-wavelength

(ko/=w) slot then G becomes, after making the change of variables y=cos O,
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4 f
71.3C2 _/f_ o

thin, resonant slot _[ EO

cos _-cos0 _ 1
sin30 m=0 (l + $om) l Hm(2)' (C sin 0)12

do. (17)

Where the relation IHm(2)'(x)l_--In_m(2)'(x)l has been used and 80re=l, m=0; 60m=0,

m # 0, is the Kronecker delta. Expression (17) is identical to that obtained by Wait [1955, eq

(15)] using integration over physical space of the radiation fields. A plot of G versus C is given
in Wait's work [1955, fig. 11; 1959, fig. 10] and shows that for C _, 10, G is within 10 percent of

the conductance of the same slot cut in an infinite fiat ground plane.
In conclusion, from the above, it is seen that use of Parseval's theorem offers another method

for determining the radiation eonductance of a slot on a perfectly conducting cylinder. It has

the advantage of not requiring a determination of the spatial variations of the fields as is required

when using integration of Poynting's vector, since it only involves operations with the cylindrical

transforms of the fields. Additionally, it can also be used to determine the suseeptance of the slot

by extraction of the imaginary part of the bracket in (10). This method can also be extended to

the case of a slot on a coated cylinder. This is presently being done.

Appendix A. Parseval's Theorem for Power Flow Through an Axial Slot

Consider an axial slot on a metal cylinder as depicted in figure 1. If the tangential electric

fields are given by (1) and (2), it follows that the power flowing through the slot is given by (8).

Now since E_ (a, _b, z) is zero off the slot, (8) can also be written as an integration over the entire

cylindrical surface p =a, i.e.,

a a¢ _r

P=Re{-_f_J_E:H,dcbdz} (18)

where in both (8) and (18) the arguments (a, 6, z) on the fields are understood. Now Hz can be
expressed as (6) and similarly

m'=_ l _ --, tE,_ (a, _b, z)=_ E_,m,(h ) eih'zdh' e_-'_
2

"t=-oo -oo

(19)

where h' and m' are dummy variables.

Substituting (6) and (19) into (18) gives

f tTp= Re E--_m,(h')_'_ dh ' _-'_ E -nzm (h) e -jh: dh e-jm4' dd_ dr,.
.=-¢z oc

(20)

Rearranging:

P=_ Re
m_-_

Hzm(h) t m....
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and recognizing that

f_t eJ6(m'-m) d_ : 271" _m' : _2_
f m' m

,, (0 m' #m (22)

_ e_z(h'-h) dz = 2n'_(h' - h) (23)
J--ac

where _' is the Kronecker delta and _ (h'-- h) is the Dirac delta function, which when substituted
into (21) gives

2-s:- }P--(2zr) 2 Re_ Hzm(h ) E6,,,(h') $,_'_(h'--h)dh' dh. (24)
m=-_¢ o_ m'=--_ t=-ac

Since the delta function has the property f(x)8 (X--xo)dx =f(x0), the above expression becomes

P=_ (2¢r)_Re_ E_ (h) H,_ (h) dh=_ (2_)2 Re_ E_H, dh. (25)

This result is a statement of Parseval's theorem in terms of the cylindrical transforms of E_

and H_.

Acknowledgment is given to H. Hodara of NESCO for discussions leading to the derivation
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APPENDIX II-A

PROGRAMMING OF EXTERNAL (RADIATION) CONDUCTANCE OF

AXIAL SLOT ON NONCOATED CYLINDER

NESCO Program Number 568

L. Butler

I. DEFINITIONS

The positive real function, gc'

1 I am
gc = 2 5 k4p2 m=0 (I + 6mo)

where

I
m

is defined by

I (A-l)
m

1 1

cos 2(_ky) dy _2 -
o 0

m_

sinZ(--_Z°) ' 6m { I m= 0a - --
m m_ Z o 0 me0

H (2) (x) = Hankel Function of the Second Kind, H (2)'
m m

6, p, and k: Positive real parameters.

f(y, m) dy {A-2)

(x) =

dH (2) (x)
m

dx

In particular, gc is required for the following set of parameters:

p = 7.22, 0. 50 < k &1.00, Ak = 0. 10, 6 = 0. 0614

II. CONVERGENCE

Before employing any numerical technique to solve the series,

questions must be answered; namely,

contribution to Im does A give, where
k
_-+(

A : _ f(y, m) dy

two

does (A-l) converge, and what

(A-3)
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We note that (A-l) will converge if the series formed by replacing a
m

by one for all m in (A-l} converges. Therefore, consider

1

gc- 2w5 k4 p2 _ Im
m=0 (A-4)

The integral I exists for each m if (A-3) exists the existence of which
rfl

will be demonstrated in the following. For the present, we assume the

existence of I
m

Now f(y,m) can be shown to be continuous on 0 < y < 1 and for each m.

Consider the series

Z f(y,m)"_(y)_"

m=0 m=0

1

[u (-(y))f (A -5)

where T(y) = 2wpk V l-y2

and the following approximations for large arguments

1
Jm(X)

Ym(X) _-

-m

It is easily shown that there exists a positive integer N such that

1
f(y, m) _

m

for m2 N.

A

gc -

Thus, (A-5) is uniformly convergent and this gives

1
1

p o IH_Z)[l.(y) ) I z
m=O

(A -6)
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The convergence of (A-3) must be shown for . 5 _ k < 1.

0.5<k< 1.0, m>o.

Consider first

Using the transformation

1 ie

r

The expression (A-B) may be rewritten as

0

_cf(Y,m,u) dY= S g(e,m,n) de

where

g (e, m, r/) =
i sin 2 (vk _eie)

ie ie ) Z
r/e ('._+ _e [(Jm '(_)2 + (Y-m

kz ie-2vpk -_ I - T- _ e .-_Z eiZe
!

It can be shown that

lim g(O, m, 71) = O
77-'0

uniformly on [0,1r] and since g (@,m, 17) is integrable on [0,v] for

each m and 17 then (A-3) is convergent. Q.E.D. Next consider

k = 0.50, m a o.

The expression (A-3) becomes in this case

1-(

l-_(Y'm) dy , (< _ <<I.
(A-7)
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With the transformation

x= 1-y

(A-7) may be approximated by

2 7?

"SF(c) 8
dx

[Ym' (pvn/2x) ]2

and

lira F(E) = 0
E-0

implying convergence of (A-3).

For a bound on (A-3) for .5 <k < I we apply the Mean Value Theorem

to give

0

T = ._ g(0, m,r/) dO = 7rg(_', m, r/) <_r max Ig(,l,,m,n)[
-'IT

_sing appropriate approximations for g(_6,m, 17) we find that for

each m

T < 31 _Tk 4

rain {[Jrn'(0)]z + [Y ' (6)]Z} (A-8)m

Now . 003 < 0 < 40 which implies that T is approximately less than 10-5

III. NUMERICAL APPROACH

In order to compute (A-l), we consider the two integrals

k

= f(y,m)dy 12 = f(y,m)dy
0

2-+77

(A-9)
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For k = .5, Eq.

_I f(Y, m) dy

0
1 ^ 1

Setting _ - 71 _ 1)_--_,

0

(A-9) reduces to

i_11 in (A-9) is treated as followsintegral
1

m) dy = f(y, m) dy
1

i=0
A

where _i = 1 - 10 -i and _L _ *)"

I z in (A-9) can be rewritten as
0 1

-- 1 1
• i=L-1 El+ 1 • -2--£

(A-tO)

(A-If)

-- 1Setting k + 17 _ 77 _ k, the integral

m) dy (A -1Z)

where (i = 1 + 10 "i and (o = Zk. The integrals in (A-11) and (A-lZ)

are evaluated numerically using the trapezoidal method with fifty

--.-_.:......* .--_I....L-.......;-*....o -I T. ,_"=,,fnrnaticallv controlled by the program,

that is, when

1
f #_"
_,q- _, m) _ ( (A-13)

where ( is an input, the sums in (A-11) and (A-lZ) are completed,

since any further contribution to the integrals in (A-9) would be

negligible. The Hankel function is computed from a Bessel-Neuman

library subroutine (BESJY-NESCO Library).

The series given by (A-l) is terminated when the n th term is less than

a given small positive number which is an input to the program.
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IV. DATA INPUT

FORTRAN NOTATION

FK:

Elm:

P:

PHI:

NI:

NZ:

N3:

FAC:

FACI :

QUANTITY

k

(inequality (A-|3))

P

o

L (equation (A-If))

Number of terms in the series

(A-l)

Number of intervals per integral

in (A-II) and (A-12)

_ o=for the Neumann function

I 0 -_. (the minimum contribution

of the integral (A-2) near the

point 1 /2 k

The FORTRAN format for the quantities FK, EP, P, and PHI is

(4E 16.8); for NI, N2, and N3 is (315); and for FAC and FACI is

(2E 16.8). The FORTRAN statements for this program follow.
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APPENDIX II-B

PROGRAMMING OF RADIATION PATTERNS--NO COATING

(NESCO Program Number 590)

L. Butler

The complex function P(_) to be computed is defined by

2 Z jm cos m
Pldp) =C m) H' (Z) 81m-0 (l + 5 (C sin

O In

where C and 0 are given parameters and 0 _ 6 < lr.

Jm(x)-j Ym(X), Eq. B-1 becomes

(B-I)

Setting H (Z)(x) =
m

J'm(C sin e) + j Ym (C sin e)
P(*) = _ Z am(_b)

[j,m(C sin 0)] Z+ [y,m(C sin 8)]Z (B-Z)m=0

.m

where am(6 ) = J ,,cos, m 4 The Bessel function subroutine BESJY
(I+5 m)

O

(NESCO library routine) was used to obtain the functional values of J
In

and Y and recursion formulae were employed in the determination of
m

their de rivative s.

The only problem in forming the sum (B-Z) in the IBM 704 computing

system was concerned with overflow and underflow in computing Y
m

and Jm' respectively for large m. By a simple logical test for the

above conditions this problem was checked.

In considering the series

.mJ

H (Z)' (x)
m=0 m

(B-3)

for a fixed argument x, there exists a positive integer N such that for

n > N, the principal asymptotic forms of Jn a_d Yn for large orders
.are valid. It eas_y follows that the residual series in (B-3) is bounded
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by

0o

n=R.

where S and L are functions of the argument x and S < <I.

(B-4)

Thus, it is sufficient to check the magnitude of the nth term (after n> N)

in series (B-I) for a criterion of convergence since (B-I) is formed by

multiplying (B-3) by a bounded sequence.

The Bessel function subroutine BESJY uses recursion techniques to

obtain Jm and Ym" Given an order M 1 and real argument x, the routine

produces Jm(X) and Ym(X) for 0 _ m < M 1. In order to minimize program

running time, an arbitrarily high order M was selected for each argu-

ment (both of which are input parameters). BESJY is called once for

each set of input parameters and the results are placed in temporary

storage and are used in the calculation of P(4) for each _.

The computer program gives a 6-history of the quantities P
real '

Pimag' _I, arg('P), and n for a given C and _)where

,o,,o{l l} (B-5)

The FORTRAN statements for thi.s program together with the data

input follow.
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DATAINPUT

PIN i,

FORTRAN NOTATION

FK:

FAC:

FACB:

N:

MAX:

PFN., DPH.:
1 1

QUANTITY

k

-_ for the Neuman function

e

N (see below)

A positive integer _ such

that Y_(C sin O) _ FAC

For i=l...,N, {*initial)i'

{*final)i' {A_b}i are partition

points for the range 0 _ _lr.

The format for the quantities FK, FAC, FACB, N, and MAX is

(3E16.8, 215); for PIN, PFN, and DPHis (4E16.8).
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APPENDIX II-C

PROGRAMMING OF RADIATION PATTERNS--DIELECTRIC COATING

(NESCO Program Number 5'97)

L. Butler

The complex function P(_) to be computed is defined by

P(%b) = 4 Z jm+l cos m _b

_C2W m-0 (1+62) [Tm Hm(Z )(C W)- NLm Hm(Z)'(CW)J (C-l)

where

t ! ! "i

T m j FY: INCW)J: (NC) ' J= . Ym (NC)Jm(NCW)gm m

Lm=J [Ym(NCW)Jm(NC) - Ym(NC)J_/(NCW)]

and C, W, and N are given parameters. By setting Hm(Z)(x) =

Jm(X) - j Ym(X) the serie_ (C-l) may be expressed as

P(_) =

whe re A
m

C ] NLj ,_.w,4 Yrn (CW)-NLm (CW) -JL,m_rn_,,,- ram'-" -J

_c_ _m,_,- _'_<,__,}[_ _,_' m_' cw'J_
• m+l

= J cos m g

(1+6 m)
O

Similar to program number 590, there are overflow and underflow

problems involved, and they are treated in the same manner as before.

In this program as opposed to 590, more terms were necessary to

obtain convergence for P(6). Due to the limitation on the magnitude o{

a floating point number which may be stored in the IBM 704 computer

(10 -38 < Ixl < 1038), it became necessary to employ the principal

If--C - 1



asymptotic forms for large orders to compute T and L . In orderm m
to determine the positive integer M such that for m> M the validity of
these forms would hold, the Bessel function routine BESJY was used

to compute Jm(X) and Ym(X) for various combinations of x and large m.

A curve of argument x versus order M (where JM(X)._ 10-35) is given
in Figure II-C-1.

Involved in the computer algorithm are three arguments:

Argument x

N'C

N'C'W

C-W

Order M

-35
JM(X) < I0

M I

M 2

M 3

In most cases the smallest of these arguments is C. W, which implies

that M 3 is less than M 1 and M 2. To alleviate problems of overflow,

BESJY is called by the main program with order M 3 for a given set of

input parameters. An additional determination of M 1 is made for the

special case when N < 1 which implies that M 1 < M 3. Asymptotic

expansions are used if more than M 1 terms are needed for convergence.

In all cases, no more than M 3 terms are needed for convergence.

\

To determine M 3 a linear approximation to the curve in Figure 1 is

used in the range of C-W, namely, 2Z < C-W < 70. The sufficiency of

checking the magnitude of the nth term for convergence may be established

in the same manner as described in the preceding section. Again, a

_6-history of Preal' Pimag' IP I, arg (P), and D is given as output by

the program. The FORTRAN statements for this program together

with the data input follow.
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DATAINPUT

FORTRAN NOTATION

FK:

XN:

W:

N, PIN i, PFN i, DPHi:

The format for the quantities FK,

for PIN, PFN, DPHis (4E16.8).

XN,

QUANTITY

k

N

W

See data input for program

590

W, and N is (3E16.8, 115},
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APPENDIX II-D

PROGILAM2VIING OF EXTERNAL ADMITTANCE

OF AN INFINITE SLOT

NESCO Program Number 609

L, Butler

The camplex functions to be computed are defined by

Ycv = gcv + j bcv

= Z)(Z=pk)
=-JZ am Hm (

wa (I +6o m)m=0 Hm (Z)'(Zwpk)

(D-l)

and

YR =gt%+JhR =
-j

IZwaW o + _I_Ik!{W- (D-Z)

Ho(Z) (Zwp:l_W)

input parameters.

No complications are involved in computing gR and b R. The results

are tabulated as a function of W for _ given k, p and a.

The computation of ¥v is similar to that of P(_) in the preceding sections,

the only difference being that more terms are necessary to obtain con-

vergence. In this case, the positive integer M such that JM(X) _10 -35

is determined from a quadratic approximation to the curve of Figure 1.

For m > M asymptotic expansions for large orders are used to obtain

II-D- 1



Jm(X) and Ym(X). Rewriting (I), gv and bv are given by

= 1 _ am

gcv aw3pk m=O (1+6om ) _n(2wp_k)_ 2 + EYm(2wpl() _

b
CV

_ 1 Z am

m=O 1+6 om

f f

Jm(Z_pk) Jm(2_pK) Ym(Z_Pk)

[Jm(Zwpk )_Z + _Ym(ZWPk )3Z

The FORTRAN statements for this program together with the data input

t011ow. Additionally the subroutine programs used by programs 568,

590, 597, and 609 are included.
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DATA INPUT

FORTRAN NOTATION QUANTITY

AC: a

P: p

PH: _o

NI, NZ: Index limits

FKi: For i=l,..., N1, {FKi}

are values of k

W.:1 for i=l,...,N2, {Wi} are

corresponding values of W.

The FORTRAN format for the quantities above is (3E15.7/215/(4E16.8)).
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APPENDIX II-E

WAVEGUIDE ADMITTANCE OF A SHUNT SLOT

Consider a thin slot cut in the narrow wall of a rectangular waveguide,

as depicted in Fig. II-E-la. This slot interrupts the surface wall

current and hence produces radiation. Its effect is to be represented

by a shunt admittance across the transmission line equivalent of the

waveguide placed at an axial location corresponding to the center of the

slot as shown in Fig. II-E- b.

f •, [ 4,
[,,, ,,,'" , I__

(a) Actual

Ill

1

I

i

i
!

!

(b) Equivalent

FIGURE II-E- 1

SHUNT SLOT iN WAVEGUIDE

II-E- 1



Stevenson (13) determined Y for the case of a resonant slot (L = v/Z)
S

for which Ys is purely conductive, i.e., Ys = Gs by the following

method.

First, consider the guide as being either infinitely long or matched at

the extreme right end. The axial magnetic field in the guide is then

given by (of course, only the dominant TE 01 mode is assumed to exist)

Hz {x,y,z)= Ho e- J flz sin (?) (E-l)
O

This magnetic field establishes the surface currents on the narrow
x

walls (x - + o ) which are entirely in the y direction (]K= 1 x]H)2 x

and if a thin slot is placed parallel to the axis it will be perpendicular

to the currents and interrupt them. As such, a displacement current

perpendicular to the long dimension of the slot will be established to

preserve continuity of current. Effectively, then an electric field or

voltage is set up across the slot. This field is taken as

E = E cos flv z (E-Z)
Yslot o

for the case of a slot which is resonant, i.e. 4= v/2, where E
O

yet, unknown but will be proportional to H , the driving field.
0

iS, as

Knowing the electric and magnetic field across the slot, the complex

power, Ps' it radiates can be determined as
L

w _6/z
Ps = -T _-6/2 Eyslot (z) _Zslot (z) dz (E-3)

For a thin slot the magnetic field in the slot can be taken as that of the

driving field since such a thin slot will not perturb this field significantly.

II-E-2



Hence, using (E-l) at x = -Xo/Z gives

Ps -'Z-- Eo o °-Z/Z cos 18vZ e -j Bz
dz

(E-4)

which gives P as purely real for the resonant case of & = I v/Z,
S

S

as

(s-5)

= w is the slot voltage at the center of the slot.where V ° E °

is positive since _</_v (_/_v = _I -(_v/ZXo)Z'').,course,

Ps ' of

Now, by definition of the external (radiation) admittance, Yc'

ZP
SY =

c [--_o[ (E-6)

one can solve for P in terms of Y
@s c

in (E-5) %o obtain V "inter.-_..sof H :
O O

then gives

P =

and IV° [Z = VoVo and insert this

Substituting this back in (E-5)

where here Yc = Gc since Ps is pure real.

Having obtained the power radiated by the slot in terms of the amplitude

of the axial magnetic field of the TE01 mode (Ho) and the external

conductance of the slot, suppose one now terminates the guide at a

distance L with a short circuit and makes L an odd number of quarter

wavelengths, so as to obtain an input admittance looking in the forward

z direction at z = o of Gs, as shown in Fig. II-E-Z.
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!
_ Short Circuit

FIGURE II-E-Z

The conductance G s will cause a reflected wave to be set up and the

magnetic field amplitude will now be given by (E-8) H O = I_o (I +F)

where I" is the reflection coefficient and I-K" is the source constant.
o

,The power Ps' delivered to the slot and absorbed in Gs, is

Ps = I_o (i+rJ(il - F) (E-9)

where P_ is the power flowing through the cross-section of the guide

:XoY ° for the incident TE01 mode, and is given by

xc 3

_ x°Y°
_oo - zl Yo/Z -2-- {rx(x)dxdy= I lZn X,o,x (E-10)

-yo/Z -xdZ v

(SinceE_ =J_ 2 H-'z and I-_ =_E_x

Y _/ x o

where _7= _'_-v = 120 ohms v
E

V

for the TE 01 mode)

Equating (E-9) with (E-7) and using (E-8) and (E-10) gives (realizing

that here 1_ = F ) the normalized input waveguide conductance gs' as

- - =-_ Yo Ggs Yol _ _7 v c (E-It)

where fl has been eliminated in terms of _v and Xo.-

II-E-4



Now, in (E-11) G is the actual e'xterzml (radiation) conductance of the
c

slot in mhos. For a thin slot i'n an infinite plane, Babinet's principle

or direct methods give (Z)

2R
Gc =W-_ = 1.03 millimhos

plane

(E-IZ)

where R is the radiation resistance of a thin half wave dipole (R_'73 ohms).

Hence, for the waveguide slot in an infinite plane

480
gsl-
plane

v c°: (E-13)

Recognizing that the term 8/lr 217 G c in (E-11) can be written as (480/731r).

(_-_) where G c is in millimhos then gives for the case of the slot in
C

an arbitrary body

48o l_-) cos z _-_-g_ol / (.-_) (E-14)gs= _ "o v c

where G is in millimhos.
C

For the case of a slot on a cylinder, G c is given by (II-13)

= 1 03 and (E-14), of course, reduces toFor an infinite cylinder G c .

(E-1 3).

Extension to Coated Cylinder

For the case of an arbitrarily long thin slot with or without a coating

the same procedure can be used to relate Ys to Yc" In essence, the

three relationships used are:

(1) Determination of P via assumed electric and magnetic
s

slot field distribution.

II.E- 5



(2) Determination of Y (by assumed voltage distribution across
S

slot and Parseval's theorem).

(3) Conservation of power.

If the magnetic field distribution for the coated case does not change in

spatial distribution from that of the no coating case (as is usually

assumed) but the voltage distribution is altered to V(z) = V v(z), then
0

the above procedure will give

Y X X 1i[2
Ys - s _ __° v (E-15)

Yol ZT? x 3
o Yo Yc

where I = __6/2v(z)e'Jfl_z and Y is the external admittance. ThusC *

(E-15) can be used to readily determine the input admittance once v(z)

is known and Y is determined.
C
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TASK Ill

DETERMINATION OF RADIATION PATTERNS FOR A CIRCULAR

WAVEGUIDE SLOT ARRAY

I. INTRODUCTION

This task is concerned with a study of the far field patterns in the

equatorial plane of a dielectric coated resonant shunt slot waveguide

array similar to that shown in Fig. III-1. The purpose is to verify

whether there exists an optimum thickness of dielectric coating such

that these radiation patterns can be made to approach an omnidirection%l

pattern.

Z. WORK CALLED FOR

In accordance with the purpose of this task, the following specific work

statement was issued: approximately twenty equatorial plane radiation

patterns of the dielectric covered waveguide slot array will be computed,

each corresponding to a slightly different dielectric thickness, and will

be examined to determine optimum thickness.

3. WORK PERFORMED

A. Introduction

Consider the circular slot array depicted in Fig. IIl-l. The radiation

characteristics of the array with regard to its performance as a

radiator of nearly omnidirectional patterns (in the plane of the array)

has been reported elsewhere (Ref. i) and will not be rediscussed here.

The array shown is an X-band waveguide resonant array consisting of

50 shunt slots. One of the novel features of the array is the use of a

dielectric cover over the array to reduce the conductance value of the

slot (Ref. Z)so that the array can be made longer. _ It has been noted,

III- 1
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however (Ref. 1), that the price paid for such a desired reduction -n

shunt slot conductance by use of such a dielectric cover is that of un-

desirable ripples produced in the radiation pattern in the plane of the

array. Additionally, however, the dielectric cover over the array,

when recessed somewhat from the metallic cylindrical surface in which

it is to be used, improves the pattern in the plane perpendicular to the

array through choking action, as compared to the case when no coating

is used and the array is flush-mounted into the metallic cylinder. Thus,

there are two distinct advantages acquired when a dielectric cover is

used, paid for by the one disadvantage of increased pattern ripple in

the plane of the array.

It is now suggested that for a given die!ectri6 constant coating material

and for a given range of available coating thicknesses for which both

advantages are still obtained (i. e., both decreased shunt slot conductance

and an improvement in the radiation pattern perpendicular to the array)

an optimum coating thickness may exist for which the pattern ripple in

the plane of the array is a minimum. If the above range of usable thick-

ness is sufficiently narrow, the optimum thickness may, perhaps, best

be determined empirically. However, for a fixed frequency operation

at X-band, even a small range of thickness can correspond to a sig-

nificant portion of a wavelength, X, in the coating material (k = kv/ (_7r' }

and hence an experimental procedure may require a prohibitively large

number of coatings in order not to pass over, i.e. , miss finding the

optimum thickness. As such, an analytical procedure is worthwhile

trying.

B. Radiation Field Expressions

Consider the side view of the actual waveguide array as shown in

Figure III-Za. This figure shows that the array is recessed in from

the metal cylinder walls so that its outer surface has a radius a with

respect to the axis of the cylinder and is coated with a dielectric cover

,III-3
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!

of dielectric constant C r which has an outer radius b with respect

to the axis of the cylinder, and can also be recessed from the metal

cylinder walls which has an outer radius r . Now, to predict the equa-o

torial plane radiation pattern (i. e. , the pattern in the plane of the array)

the model shown in Fig. III-2b can be used, since it is known that for

a sufficiently long cylinder the equatorial plane pattern is approximately

independent of cylinder length both with (Ref. 3) and without (Ref. 4)

a coating, and that the effect of recessing will be to produce diffraction

at the edges of the recess which will predominately effect the elevation

plane pattern. As such, the model of Fig. III-2b, with all the slots

centered at the plane z = o, will be utilized as far as antenna, pattern

prediction in the equatorial plane is concerned. Now, the electric

fields over each slot are assumed to be of equal magnitude and phase,

therefore, any arbitrary slot k whose center is at the angle _6k is

assumed excited with an E field of the form
Z

Ez(a, ¢, o) O [_ off slot -.
,o ,]} ,oin { C +i(¢-¢k , _k- -'2- < _ < _k

]} ,o,_sin C - l*-*kl .. % * +

where $o = _-- angular slot width
a

= length of siot

C

X
V

_ra

= _ = circumference of cylinder in free space
v wavelengths

= free space operating wavelength.

on

slot

(i!_-- 1)

Additionally, the E 6 field on the slot, since it is very narrow, is taken

as zero, as it also is over the rest of the cyIinder, i.e.

E4 (a,4,z) = 0. (III-2)
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With a knowledge of the tangential electric fields over the kth slot, the

radiation fields produced by this slot in the equatorial plane can be

found using the general method of Wait (Ref. 5). For the specific pro-

blem of a circumferential slot excited according to Eqs. III-I and III-2

on a coated or noncoated cylinder, the equatorial plane radiation fields

produced are (Ref. 3, Equation (55), with 4 replaced by _-_k )

EOk (r,_/2,¢) = _ He(=,_:/2,¢) = Vo 7"-,j&.r.'<.eI¢_'
V

(IIi-3)

whe re

(III-4)

jm (,---_--) cos ,n( _b- J_k_:os - co,_;\ "']-d

,(4)Z ? <! _,_,
Tr m:. 0 m m

whe re lm=0
6 m

o _0 rn _: 0

and

)'(New) _' )(No)u = a (NC) H(Z .- a ,(Ncw) ._ .... _]-5)
m m m _n

with N = _Tr and W =: b/a..

IU.- 6



For the special case of no coating (N = 1 and/or W = 1) fk(6) reduces

to

o_ .mFcos____._o) cos C_°
I - (T)] c °s m(*-'_k)ZC J " (IIIL7)

fk(¢) = -J---_ (C Z Z)( Z)W m=O -m l+6F) H(:n_ (C)

For an array of S circumferential slots the total field produced is the

sum of the field produced by each of the kth slots, i.e. ,

S S

Eo(r'w/Z'¢) = Z Eok = Vo _e-J/_v r Z fk(¢)

k= 1 r k= I

(m-8)

and the power radiation pattern D(6) is then given by

Ee (r, r/z,o)I

D(q_) = ZOlOglo !Es,lr, w/Z,,} i Db.
l

(III-9)

C. Radiation Field Computations

1. No Coatin_

The equatorial plane radiation field for a noncoated single slot,

centered at the origin (i.e.,61 = o) for a cylinder of 2a = 16-5/32 inches
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and a slot length of _, = 0.500 inch operating at a frequency of 9,210 mc

(corresponding to C = 39.5 and _o = 3.55 °) was computed using Eq. III-7.

The programming of Eq. III-7 is discussed in Appendix III-A. A plot

of the normalized field quantity, IE@ ( r, Tr /Z, _)/E@ ( r, _r/2, 0) I =

_(_)/f(o) I is shown in Fig, III-3. A plot of the phase, @f, where

f(4) = If(4) l e j @f, is plotted in Fig. III-4, and a power radiation

pattern, D(4), is shown inFig. III-5. It was found that 80 terms inthe

summation of Eq. III-7 gives four significant figure accuracy in both

the magnitude and phase of f(_).

From Eqs. III-8 and III-9 the pattern of an uncoated 54 slot array was

then computed. A tabulation in both phase and magnitude of fk(_) for
1

k = i and _i = o in increments of &_ = _ degree suffices to compute

Eq. III-8 for the 54 slot array case in increments of _ of A_ = l degree.

Inspection of Eq. III-8 for this case reveals that the field of the array

is periodic in $ with periodicity 6-2/3 degrees. Computation of the

radiation pattern, D(_), in increments in _ of &_ = l degree revealed

that the pattern was omnidirectional within + 0. l0 Db, and hence is not

drawn here.

2. C oaring

Computations of the radiation field for single slot case using Eq. III-4

' = N 2for a coating of N = 1.595 (_e = 2.54) and of variable thickness on

the above cylinder (C = 39.5, _o = 3.55 °) and with the same sIot excitation

as with no coating, i.e., Eqs. III-1 and III-2 were performed. The

programming of this case is described in Appendix III-B.

The resultant radiation power patterns, D(_), as a function of coating

thickness, T, where T = b-a are shown in Figs° III-6-1 through II-6-27.

Increments in thickness, AT, of AT = 0.0323 inch were used corres-

ponding to AW = 0.004. The case of the cylinder being flush with the

outside cylinder wall, i.e., b = b = r where here 2 r = 17-9/16inch
max o o

III- 8



q

I(0);I

Ic#,),Jl

I I I I

o o d o

I(o'_'''j) 031 '0731_-I 31_110373 03ZI7VN_ION

I(_'_/,,'_)_1

o

o

o
o
c5

<

Z
al

0

0

Z

0

Z

<

Z
0

<

D Z

<

al 0 Z

III-9



+400 I I I I I I 1 I I j
0

O9
UJ
UJ
rr
0
i,i
r_

CD

bJ
OO
<I
I
O.

-400

- 1,200

-2,000

-2,800

-3,600

--4,400

- 5,200

- 6,000

-6,800

C =39.5

= 3.55 °
7"0

I I I
0 20 40 60 80 I00 120 140 160 180

AZIMUTHAL ANGLE, _, DEGREES ---"--"

FIGURE III-4

EQUATORIAL PHASE PATTERN FOR SINGLE

CIRCUk4FERENTIAL SLOT, NO COATING

III-i0



310'

320 °

33O

340 °

350 °

30 °

40 °

50 °

300

290 °

280 °

260 c

LlO*

230 _ 130 °

210 _

ZO

190 o _0 °

FIGURE III-5

EQUATORIAL POWER PATTERN OF SINGLE SLOT,

NO COATING

III-ll

C = 39.5

@o = 3.55 °

(80 terms)



I

I

SLOT_ _ _COATING

_/ REFRACTIVE INDEX=N

330o 340°

320 °

0 ° 10 °

20 °

FOR ALL PATTERNS

C = 39.5 = 2"rro/Xv

f : 9,210 mc

_o= 3.550

20= 16_"

N : 1.595

30 =

40 °

310 30°

300 c
60 °

290 °

280 c

270 °

260

L20°

23(

210'

=9o 180o o°

]:"IGURE III-6-1

COMPUTED EQUATORIAL PLANE POWER PATTERN

OF A SINGLE CIRCUMFERENTIAL SLOT - NO COATING

III-IZ

130 °

50 °

(P(o) l

T = b-a =a(W-1) = 0

W = 1,000

= 0.21009



320 °

330 °

340 °

350 °
0 ° 10 °

40 °

300 _

290 °

280 °

110"

230 c 130 o

22(

N : 1.595

210

190

FIGURE III-6-2

COMPUTED EQUATORIAL PLANE POWER PATTERN

OF A SINGLE CIRCUMFERENTIAL SLOT

T

W

I o)1

0 °

= O. 0323"

= 1. 004

= 0.21417

IU=13



320 °

330 °

340 °

330 °

20 °

300 _ 60 °

290 °

280 °

?70 _ 90 •

260'

250' IlO °

120 °

230 °

N = i. 595 2o
19o' 180° ,o°

FIGURE II1-6-3

COMPUTED EQUATORIAL PLANE FKgWER PATTERN

OF A SINGLE CIRCUMFERENTIAL SLOT

Ill-14

po

°° Z

W

IP(o)l

i0 °

0. 0646"

l, 008

0. 22671



320 °

o
330

340 °

350 °

30 °

50 °

300 °

280 c

27n c

260'

230 °

N = 1.595

FIGURE Ill- 6-4

210:

COMPUTED EQUATORIAL PLANE POWER PATTERN

OF A SINGLE CIRCUMFERENTIAL SLOT

III-15

io

T

W

IP(o) l

130 °

O. 0969"

I. 012

0. 24841



310 q

320 °

330 °

340 °

350 ° 0 ° 10°

20 °

30 °

50 °

300 °
60 °

290 °

2804

260 c

120 °

N : I. 595

,_o 180°

FIGURE llI-6-5

EQUATORIAL PLANE POWER PATTERNS OF

SINGLE CIRCUMFERENTIAL SLOT

III-16

oo

1°

T = 0. 1293"

W = 1.016

JP(o) I = 0.27891



320 °

330 °

350 °

290 °

280 °

110 e

r120 °

230 _

N = 1.595

220 °

210'

190
180"

FIGURE ill-6-6

COMPUTED EQUATORIAL PLANE POWER PATTERN

OF A SINGLE CIRCUMFERENTIAL SLOT

IlI-17

1o

T =

W

IP(o)l

130 °

0. 1616"

l. OZO

0.31Z66



310 q

o
330

340 °

350 °

20 °

50 °

300 ©

60 °

290 °
70 °

280 _

80 °

90 °

O0 °

250

LIO°

120 °

230 °

220 °

210'

N = I. 595 190 180 o 0°

FIGURE III- 6-7

EQUATORIAL PLANE POWER PATTERNS OF SINGLE

CIRCUMFERENTIAL SLOT

III-18



310'

320 °

330 °

340 °

O" lO°

20 °

200 °

280 °

260'

230 °

210

N = 1.595

FIGURE III-6-8

COMPUTED EQUATORIAL PLANE POWER PATTERN

OF A SINGLE CIRCUMFERENTIAL SLOT

III-19

T = 0. 2262"

= I. 028

= O. 32673



310

320 °

330 °

340 °

350 _ 0° I0°

20 °

50 °

300 °
60 °

290 °

280 °

270 a
90 °

260'

I10 °

120 °

230 °

210 C

N = 1. 595
180 °

FIGURE III- 6-9

EQUATORIAL PLANE POWER PA:'i KI__NS OF' SINGLE

CIRCUMFERENTIAL SLOT

II[--20

0 o
T

W

Ip(o)l

10°

0. 2585 "

= I. 032

= O. 29738



320 °

330 °

340 °

3S0 °

20 °

30 °

300 °

280 _

260

I10 e

230 °

2]

N = 1.595

FIGURE IIl- 6- I0

COMPUTED EQUATORIAL PLANE POWER PATTERN

OF A SINGLE CIRCUMFERENTIAL SLOT

III-21

T

W

I o)I

= 0.2908"

= 1.036

= 0.26284



320 °

o
330

340 °

350 °

40 °

50 °

300 °
60 °

290 ° 70 °

280 °

270 ©
90 °

260'

2EO'

120 °

230 °

N = 1.595 13o° 180° ,oo

FIGURE III-6- 11

COMPUTED EQUATORIAL PLANE POWER PATTERN

OF A SINGLE CIRCUMFERENTIAL SLOT

III-22

)o

T=

W=

IP(o)l =

I0°

0. 3231"

1. 040

0. Z7140



310'

300 °

280 °

260

2S0 I10 °

230 °

21

N = 1.595

FIGURE III-6-12

COMPUTED EQUATORIAL PLANE POWER PATTERN

OF A SINGLE CIRCUMFERENTIAL SLOT

III-23

= 0. 3555"

= 1. 044

= 0. 18219



320 _

o
330

340 °

350 °
0 ° ]0 °

20 °

30 °

40 °

60 °

290 ° 70 °

280 _

?70 ¢

260'

250 c tO°

t20 °

23( 130 °

N = 1.595

FIGURE III-6-13

210

COMPUTED EQUATORIAL PLANE POWER PATTERN

OF A SINGLE CIRCUMFERENTIAL SLOT

III-24

)o

0 °

T

W

IP(o)l

= 0.3877"

= 1.048

= 0.27166



290 °

280 °

320 °

34{) °

350 °

40°

260 c

230 _ 130 °

LIO °

210 _

N= 1.595

is( 180 ° u°

FIGURE III-6-14

COMPUTED EQUATORIAL PLANE POWER PATTERN

OF A SINGLE CIRCUMFERENTIAL SLOT

Ill-2 5

T

W

i o)i

= 0.4201"

= I. 052

= O. 22405



320 °

330 _

340 °

350 °

40 °

300c 60 °

290 ° 70 °

280 _

270 °

260 c

120°

23(

22C

210'

N = 1. 595 19o 180° o°

FIGURE III-6- 15

EQUATORIAL PLANE POWER PATTERNS OF SINGLE

CIRCUMFERENTIAL SLOT

III-26

T

W

JP(o) l

130 °

0. 4524"

I. 056

0. 22471



320 °

o
330

340 °

350 °

40 °

310

300 ¢

ZgO °

280 °

260'

230 ° 130 °

N = 1.595

FIGURE III-6-16

EQUATORIAL PLANE POWER PATTERNS OF SINGLE

CIRCUMFERENTIAL SLOT

III-2 7

|=

T =

W =

I_o)] --

0. 4847"

I. 060

0. Z4309



320 °

330 °

340 °

350 °

20 °

30 °

40 °

30 °

300 c 60 °

290 °

280 c

260

250

120°

23C

210 c

N= 1.595

19o 180 °

FIGURE III-6- 17

EQUATORIAL PLANE POWER PATTERN OF

SINGLE CIRCUMFERENTIAL SLOT

lll-Z8

0 o

0 o

T =

130 °



320°

330°

350u

40 °

290 °

280"

260

250
LIO°

230 °

N = 1.595

210'

FIGURE III-6- 18

EQUATORIAL PLANE POWER PATTERNS OF

SINGLE CIRCUMFERENTIAL SLOT

Ill-Z9

T = 0.5494"

W = 1. 068

IP(o) l = 0. Z9943



320 °

o
330

340 °

350 ° 0 ° 10 °

20 °

40 °

50 °

300 °

290 °

280 _

27n °

260

I10 °

23(

22C

N= 1.595

210'

190

FIGURE III-6- 19

EQUATORIAL PLANE POWER PATTERNS OF SINGLE

CIRCUMFERENTIAL SLOT

III-30

T

W

I o)I

130 °

0. 5816"

I. 07Z

O. 32770



320 °

350"
0° I0°

316

290 °

280 °

27n c

260 _

250

230 ° 130 °

N = 1.595

FIGURE III-6-Z0

EQUATORIAL PLANE POWER PATTERNS

OF SINGLE CIRCUMFERENTIAL SLOT

III-31

T

W

i='(o)[

= 0. 6140"

= 1. 076

= 0. 33390



320 °

o
33O

340 °

350 ° 0 ° I0 °

40 °

310 50 °

300 ° 60 °

290 °

$0 °

90 °

LIOa

120 °

210 c

N= 1.595

19c 180 ° o °

FIGURE 111-6-21

EQUATORIAL PLANE POWER PATTERNS OF SINGLE

CIRCUMFERENTIAL SLOT

Ill- 32

0 o
T =

W =

I_o)l =

O. 6462"

1. 080

O. 31348



340 °

_o

210'

N= 1.595

FIGURE III-6-2Z

EQUATORIAL PLANE POWER PATTERNS OF SINGLE

CIRCUMFERENTIAL SLOT

ILI- 33

T

W

I o)1

= 0. 6786"

= 1. 084

= 0. Z8119



350 ° 0 ° _i; 10 °

40 °

70°

90 °

%

230Y

%

:, 220 °

N = I. 595 _I

120 °

CIRCUMFERENTIAL SLOT T ()_[72 _AI2 %4_ _I_:(*;!L_._i_[)_i[L)

LIO °



340 e

_50 °

25O

230 °

2]

N = 1.595
190'

FIGURE III- 6-24

EQUATORIAL PLANE POWER PATTERNS OF SINGLE

GIRGUMFERENTLAL SLOT

III- 35

T

W

I_o)1

= 0.7109"

= 1. 088

= 0. 25202



320 °

330 °

340 °

350 °

20 °

40 °

50 °

290 °
70 °

280 °

27n ©

260
LOO°

LIO °

N= 1.595

FIGURE III- 6-25

210

180°

EQUATORIAL PLANE POWER PATTERNS OF SINGLE

CIRC UMFERENTIAL SLOT

III- 36

50 °

T

W

P(o) l

0. 7432"

I. 09Z

0.23]31

_20°

30 °



320 °

330 °

340 °

3f.jO° 0 ° 10°

31C

260 c

250

230 c

210 c

N = 1. 595

FIGURE III- 6-Z6

EQUATORIAL PLANE POWER PATTERNS OF SINGLE

CIRCUMFERENTIAL SLOT

III-37

i•

T

W

I o)1

= 0. 7755"

= 1.096

= 0.21944



320 °

330 °

340 °

350 ° 0 ° 10 °

20 °

300 c

290 ° 70 °

280 _
00"

270 °

260

110°

210'

1_ : 1. 59 5 190 180 ° 0 o

FIGURE IZI- 6-27

EQUATORIAL PLANE POWER PATTERN OF SINGLE

CIRCUMFERENTIAL SLOT

III- 38

50 °

T =

W =

IP(o)l :

130 °

0. 8078"

i. ]00

0.21567



gives W = 1.087 and T
max max

III-6-Z3).

= 0. 703 inch was also computed (Fig.

An inspection of Figs. III-6-1 through III-6-27 for the single slot case

reveals that the patterns broaden with increasing W and are not oscil-

latory above the 40 db down level from 1 _ W<_ 1.032. A further increase

in thickness causes ripples and oscillations to occur in the rear direction

(roughly 110°< $ _ Z50 ° for W = 1.036), then ripples occur throughout

the pattern for larger W's (1.04_ W<_ 1.05} with significant lobes of

radiation occurring in the rear direction. A further increase in W

causes the patterns to again resemble that of the noncoated case (1.056

W £ 1.096} becoming much broader for the higher W's (1.084_ W <_1. 096).

Thus, maximum ripple effects occur in the range of 1.04_ < W £ 1. 052

corresponding to athickness range of 0.32"_<T _0.4Z'', or i.e., 0.4

_ 0.5 X = X /N is the in imbounded dielectric;(where wavelength
V

here X = 1.Z8 inch (f = 9.210 mc).%X -'- 0.80 inch}. In this thickness
v

range it is noted that the mean electrical circumference of the coating,

i.e., k2_ (a+b)2 - ][2_aN (W+l)z - CN (W+l)/2 varies approximately
V v

1.0Z NC to 1.03 NC, i.e., by .01 NC, where here NC = (1.595) (39.5) =

6Z.70, therefore, the mean electrical circumference changes by 0.627

wavelengths. Thus, even though the change in coating thickness is

T/_ = 0.50-0.40 = 0.1 the corresponding change in mean electrical

circumference is 0.6, i.e. , over a half wavelength. Thus, a small

change in thickness can lead to a large change in circumferential length

for a large cylinder (C large).

It is seen from the relatively smooth transition from pattern to pattern

for successive values of W that sufficiently fine increments in W were

taken so as not to bypass any important phenomenon. The value [P(o}[

on each figure is the normalized on axis (6 = o degrees) electric field

value, i.e. [P(o)] = ]fl(4)[ where fl(4) is given by Eq. III-4with4l=O.

Figures 111-7-1 and III-7-2 show the power patterns, D(6), for the 54
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slot array for the cases of W = 1.064 and W = i. I00 obtained by use of

Eq. III-8 with the available above computations of Eq. III-4. It is to

be noted that the db scale in Fig. III-7 is 0-_ 4 db whereas in Fig. III-6

it is 0-_40 db. The case of W = 1.064 corresponding to dielectric thick-

ness of T = 0.517 inch is the case representing the most serious departure

(+- 1/2 db) from omnidirectionality of all the cases computed; all other

cases for the values of W of Figs. III-6-1 through III-6-Z7 were within
+
- 0.12 db of being omnidirectional and, hence, only one such case (the

W = 1.100 case) was actually plotted. It is noted that 54 cycles occur

in each pattern.

4. CONCLUSIONS

From the above computations, it is concluded that a 54 element X-band

array of uniformly excited, in phase, circumferential slots centered

in the same plane and flush with the metallic surface should produce

excellent omnidirectional coverage in the equatorial plane even if the

array is coated (completely) with a dielectric material of dielectric

constant near 2.5 and is of any thickness from zero to about three

quarters of an inch. The maximum deviation from omnidirectionality

predicted is +- I/2 db and occurs for a dielectric thickness near I/2inch.

As such, this work rigorously justifies the consideration of the employ-

ment of such an array for use as a omnidirectional radiation in the equa-

torial plane of an electrically large cylindrical surface.

If a difference is found to exist between the above computed patterns

for the model of Fig. III-2-b and that of the actual array of Fig. III-2-a,

and the correctness of the computations is ascertained (as can be done,

for example, by measurement of the patterns for the single slot case

and comparison with corresponding computed patterns), such a difference

implies that either the above model is not accurate enough and/or that

the actual array is not excited uniformly. These alternatives wouldhave

to be investigated further to isolate the responsible one.
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APPENDIX III-A

PROGRAMMING OF PATTERNS FOR NONCOATED ANTENNA

NESCO Program Number 545

P. Gilon

The problem can be stated as follows:

A. Evaluate the complex function f(,):

• (%)]
-2C _ j a.

f(*) = -"2"-- , II'C2-m2" (l+Sm}o H (2} (C)w m=O m

cos (m,)

where:

1 m=0
m = Kronecker Delta

1. 50 =

0 m#0

2. Hm(2) (C) = Jm (C)- JYm (C) = Hankel function of

Second Kind, order m, argument C.

o Jrn(C) = Besse! function First Kind, order m,

argument C.

o

5.

Yrn(C) = Neumann function, order m, argument C.

, = Independent Variable, 0 ° < , < 360 ° .

Instructions:

B. Output following variable s:

1. f(*) real

Z, f(*) complex

3° If(*)l -i where f(*) = If(*)le j_

4, 0(¢) _j
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Co

D_

5. D(¢) = 20 lobl0

Use of Programs

The data inputs are:

LOGICI

MMMM

LOGIC2

LOGIC3

PHIDI

PHIDL

DPHID

C

FIZD

CAPN

1, input MMMM; = 0 test for Convergence

Upper bound of Summation

1 Normalized Magnitude

1 resets 0 = (PHIDL/C)

Initial Value of _, in degrees

Final value of _, in degrees

_5 increment, in degrees

C, parameterJ , positive and real

Parameter for Part 2, real, pos. number

The format for this data is (413, 6F 10.2)

Sense Switches

SS 1 down = Main Program, intermediate output on tape 6.

SS 2 down = Main Program, online intermediate

output with "do loops"

SS 3 down = CALL SUBROUTINE PART 2

SS 4 down = Part If, intermediate output on tape 6

SS 5 down = Part II online, intermediate output, within

"do loops ".

The Fortran statement for this program follows.
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APPENDIX III-B

PROGRAMMING OF PATTERNS FOR COATED ANTENNA

NESCO Prograrn Number 586

P. Gilon

The problem can be stated as follows:

Ae Evaluate the complex function, f(_) for values of W:

Large-re[cos (--_)- cos(_-_)]cos (m*)

See Appendix III_A_and,where:

N = CAPN (input)

W = real positive number

L..rn m m n'l j

lo

Z.

3,

4. Vm = -i .__,(NC) Yrn (NCW) - Jm

d
s. _ = _ (_(x)) etc.

B. Evaluate E(#)=_ fK(_)

K= 1

(NCW) rrn(NC)]

(B-l)

(B-Z)

where IV[is described in E.

where fK(_) of (B-l) but with _ replaced by (_ - _K )

Instructions:

C. Output following variables for each W

1. f(d_)real

2. f(_b)imaginar ¥

III- B- 1



D,

o

4.

5.

6.

7.

F(_)real

F((P)imaginar y

IF(¢)I

e(_)

D(_) =

where F(¢)= IF(¢)Ipi8(¢)

_IF(¢)I oD20 loglo IF(C) _ =

Use of Program

i. SS 3 down

E. Input Data

The datainput is read on line by SUBROUTINE PART II

when called first time by main program (sense light 3)

ANGMAX = CMax. (360°) in degrees

YM = INPUT parameter floating

M = YM fixed

IRATIO = Fixed number = 9_ max ,
YM D PHID (=Z0)

The format is (2FI0.0, 21 I0)

The Fortran statement for this program follows.

III-B- Z
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